Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Systemic and adipocyte transcriptional and metabolic dysregulation in idiopathic intracranial hypertension
Connar S.J. Westgate, … , Gareth G. Lavery, Alexandra J. Sinclair
Connar S.J. Westgate, … , Gareth G. Lavery, Alexandra J. Sinclair
Published April 13, 2021
Citation Information: JCI Insight. 2021;6(10):e145346. https://doi.org/10.1172/jci.insight.145346.
View: Text | PDF
Clinical Medicine Neuroscience Ophthalmology

Systemic and adipocyte transcriptional and metabolic dysregulation in idiopathic intracranial hypertension

  • Text
  • PDF
Abstract

BACKGROUND Idiopathic intracranial hypertension (IIH) is a condition predominantly affecting obese women of reproductive age. Recent evidence suggests that IIH is a disease of metabolic dysregulation, androgen excess, and an increased risk of cardiovascular morbidity. Here we evaluate systemic and adipose specific metabolic determinants of the IIH phenotype.METHODS In fasted, matched IIH (n = 97) and control (n = 43) patients, we assessed glucose and insulin homeostasis and leptin levels. Body composition was assessed along with an interrogation of adipose tissue function via nuclear magnetic resonance metabolomics and RNA sequencing in paired omental and subcutaneous biopsies in a case-control study.RESULTS We demonstrate an insulin- and leptin-resistant phenotype in IIH in excess of that driven by obesity. Adiposity in IIH is preferentially centripetal and is associated with increased disease activity and insulin resistance. IIH adipocytes appear transcriptionally and metabolically primed toward depot-specific lipogenesis.CONCLUSION These data show that IIH is a metabolic disorder in which adipose tissue dysfunction is a feature of the disease. Managing IIH as a metabolic disease could reduce disease morbidity and improve cardiovascular outcomes.FUNDING This study was supported by the UK NIHR (NIHR-CS-011-028), the UK Medical Research Council (MR/K015184/1), Diabetes UK, Wellcome Trust (104612/Z/14/Z), the Sir Jules Thorn Award, and the Midlands Neuroscience Teaching and Research Fund.

Authors

Connar S.J. Westgate, Hannah F. Botfield, Zerin Alimajstorovic, Andreas Yiangou, Mark Walsh, Gabrielle Smith, Rishi Singhal, James L. Mitchell, Olivia Grech, Keira A. Markey, Daniel Hebenstreit, Daniel A. Tennant, Jeremy W. Tomlinson, Susan P. Mollan, Christian Ludwig, Ildem Akerman, Gareth G. Lavery, Alexandra J. Sinclair

×

Usage data is cumulative from June 2021 through June 2022.

Usage JCI PMC
Text version 3,657 233
PDF 2,050 63
Figure 310 1
Table 50 0
Supplemental data 257 4
Citation downloads 44 0
Totals 6,368 301
Total Views 6,669

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts