Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade
Gladys Ferrere, … , Guido Kroemer, Laurence Zitvogel
Gladys Ferrere, … , Guido Kroemer, Laurence Zitvogel
Published December 15, 2020
Citation Information: JCI Insight. 2021;6(2):e145207. https://doi.org/10.1172/jci.insight.145207.
View: Text | PDF
Research Article Metabolism Oncology

Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade

  • Text
  • PDF
Abstract

Limited experimental evidence bridges nutrition and cancer immunosurveillance. Here, we show that ketogenic diet (KD) — or its principal ketone body, 3-hydroxybutyrate (3HB), most specifically in intermittent scheduling — induced T cell–dependent tumor growth retardation of aggressive tumor models. In conditions in which anti–PD-1 alone or in combination with anti–CTLA-4 failed to reduce tumor growth in mice receiving a standard diet, KD, or oral supplementation of 3HB reestablished therapeutic responses. Supplementation of KD with sucrose (which breaks ketogenesis, abolishing 3HB production) or with a pharmacological antagonist of the 3HB receptor GPR109A abolished the antitumor effects. Mechanistically, 3HB prevented the immune checkpoint blockade–linked upregulation of PD-L1 on myeloid cells, while favoring the expansion of CXCR3+ T cells. KD induced compositional changes of the gut microbiota, with distinct species such as Eisenbergiella massiliensis commonly emerging in mice and humans subjected to carbohydrate-low diet interventions and highly correlating with serum concentrations of 3HB. Altogether, these results demonstrate that KD induces a 3HB-mediated antineoplastic effect that relies on T cell–mediated cancer immunosurveillance.

Authors

Gladys Ferrere, Maryam Tidjani Alou, Peng Liu, Anne-Gaëlle Goubet, Marine Fidelle, Oliver Kepp, Sylvère Durand, Valerio Iebba, Aurélie Fluckiger, Romain Daillère, Cassandra Thelemaque, Claudia Grajeda-Iglesias, Carolina Alves Costa Silva, Fanny Aprahamian, Déborah Lefevre, Liwei Zhao, Bernhard Ryffel, Emeline Colomba, Monica Arnedos, Damien Drubay, Conrad Rauber, Didier Raoult, Francesco Asnicar, Tim Spector, Nicola Segata, Lisa Derosa, Guido Kroemer, Laurence Zitvogel

×

Full Text PDF | Download (6.50 MB)

Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts