Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Acyl-CoA synthetase 6 is required for brain docosahexaenoic acid retention and neuroprotection during aging
Regina F. Fernandez, … , Jeffrey B. Eells, Jessica M. Ellis
Regina F. Fernandez, … , Jeffrey B. Eells, Jessica M. Ellis
Published June 8, 2021
Citation Information: JCI Insight. 2021;6(11):e144351. https://doi.org/10.1172/jci.insight.144351.
View: Text | PDF
Research Article Inflammation Metabolism

Acyl-CoA synthetase 6 is required for brain docosahexaenoic acid retention and neuroprotection during aging

  • Text
  • PDF
Abstract

The omega-3 fatty acid docosahexaenoic acid (DHA) inversely relates to neurological impairments with aging; however, limited nondietary models manipulating brain DHA have hindered a direct linkage. We discovered that loss of long-chain acyl-CoA synthetase 6 in mice (Acsl6–/–) depletes brain membrane phospholipid DHA levels, independent of diet. Here, Acsl6–/– brains contained lower DHA compared with controls across the life span. The loss of DHA- and increased arachidonate-enriched phospholipids were visualized by MALDI imaging predominantly in neuron-rich regions where single-molecule RNA in situ hybridization localized Acsl6 to neurons. ACSL6 is also astrocytic; however, we found that astrocyte-specific ACSL6 depletion did not alter membrane DHA because astrocytes express a non–DHA-preferring ACSL6 variant. Across the life span, Acsl6–/– mice exhibited hyperlocomotion, impairments in working spatial memory, and increased cholesterol biosynthesis genes. Aging caused Acsl6–/– brains to decrease the expression of membrane, bioenergetic, ribosomal, and synaptic genes and increase the expression of immune response genes. With age, the Acsl6–/– cerebellum became inflamed and gliotic. Together, our findings suggest that ACSL6 promotes membrane DHA enrichment in neurons, but not in astrocytes, and is important for neuronal DHA levels across the life span. The loss of ACSL6 impacts motor function, memory, and age-related neuroinflammation, reflecting the importance of neuronal ACSL6-mediated lipid metabolism across the life span.

Authors

Regina F. Fernandez, Andrea S. Pereyra, Victoria Diaz, Emily S. Wilson, Karen A. Litwa, Jonatan Martínez-Gardeazabal, Shelley N. Jackson, J. Thomas Brenna, Brian P. Hermann, Jeffrey B. Eells, Jessica M. Ellis

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts