Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
Identification of Wee1 as a target in combination with avapritinib for gastrointestinal stromal tumor treatment
Shuai Ye, … , James S. Duncan, Lori Rink
Shuai Ye, … , James S. Duncan, Lori Rink
Published December 15, 2020
Citation Information: JCI Insight. 2021;6(2):e143474. https://doi.org/10.1172/jci.insight.143474.
View: Text | PDF
Research Article Oncology Therapeutics

Identification of Wee1 as a target in combination with avapritinib for gastrointestinal stromal tumor treatment

  • Text
  • PDF
Abstract

Management of gastrointestinal stromal tumors (GISTs) has been revolutionized by the identification of activating mutations in KIT and PDGFRA and clinical application of RTK inhibitors in advanced disease. Stratification of GISTs into molecularly defined subsets provides insight into clinical behavior and response to approved targeted therapies. Although these RTK inhibitors are effective in most GISTs, resistance remains a significant clinical problem. Development of effective treatment strategies for refractory GISTs requires identification of novel targets to provide additional therapeutic options. Global kinome profiling has the potential to identify critical signaling networks and reveal protein kinases essential in GISTs. Using multiplexed inhibitor beads and mass spectrometry, we explored the majority of the kinome in GIST specimens from the 3 most common molecular subtypes (KIT mutant, PDGFRA mutant, and succinate dehydrogenase deficient) to identify kinase targets. Kinome profiling with loss-of-function assays identified an important role for G2/M tyrosine kinase, Wee1, in GIST cell survival. In vitro and in vivo studies revealed significant efficacy of MK-1775 (Wee1 inhibitor) in combination with avapritinib in KIT mutant and PDGFRA mutant GIST cell lines as well as notable efficacy of MK-1775 as a monotherapy in the engineered PDGFRA mutant line. These studies provide strong preclinical justification for the use of MK-1775 in GIST.

Authors

Shuai Ye, Dinara Sharipova, Marya Kozinova, Lilli Klug, Jimson D’Souza, Martin G. Belinsky, Katherine J. Johnson, Margret B. Einarson, Karthik Devarajan, Yan Zhou, Samuel Litwin, Michael C. Heinrich, Ronald DeMatteo, Margaret von Mehren, James S. Duncan, Lori Rink

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts