Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Usage Information

Autophagy stimulation reduces ocular hypertension in a murine glaucoma model via autophagic degradation of mutant myocilin
Ramesh B. Kasetti, … , Val C. Sheffield, Gulab S. Zode
Ramesh B. Kasetti, … , Val C. Sheffield, Gulab S. Zode
Published February 4, 2021
Citation Information: JCI Insight. 2021;6(5):e143359. https://doi.org/10.1172/jci.insight.143359.
View: Text | PDF
Research Article Cell biology Ophthalmology

Autophagy stimulation reduces ocular hypertension in a murine glaucoma model via autophagic degradation of mutant myocilin

  • Text
  • PDF
Abstract

Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) damage is associated with primary open-angle glaucoma (POAG). Myocilin mutations resulting in elevated IOP are the most common genetic causes of POAG. We have previously shown that mutant myocilin accumulates in the ER and induces chronic ER stress, leading to TM damage and IOP elevation. However, it is not understood how chronic ER stress leads to TM dysfunction and loss. Here, we report that mutant myocilin activated autophagy but was functionally impaired in cultured human TM cells and in a mouse model of myocilin-associated POAG (Tg-MYOCY437H). Genetic and pharmacological inhibition of autophagy worsened mutant myocilin accumulation and exacerbated IOP elevation in Tg-MYOCY437H mice. Remarkably, impaired autophagy was associated with chronic ER stress–induced transcriptional factor CHOP. Deletion of CHOP corrected impaired autophagy, enhanced recognition and degradation of mutant myocilin by autophagy, and reduced glaucoma in Tg-MYOCY437H mice. Stimulating autophagic flux via tat-beclin 1 peptide or torin 2 promoted autophagic degradation of mutant myocilin and reduced elevated IOP in Tg-MYOCY437H mice. Our study provides an alternate treatment strategy for myocilin-associated POAG by correcting impaired autophagy in the TM.

Authors

Ramesh B. Kasetti, Prabhavathi Maddineni, Charles Kiehlbauch, Shruti Patil, Charles C. Searby, Beth Levine, Val C. Sheffield, Gulab S. Zode

×

Usage data is cumulative from February 2021 through April 2021.

Usage JCI PMC
Text version 664 0
PDF 208 0
Figure 55 0
Supplemental data 22 0
Citation downloads 8 0
Totals 957 0
Total Views 957

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts