Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Kcnj16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat
Anna D. Manis, … , Matthew R. Hodges, Alexander Staruschenko
Anna D. Manis, … , Matthew R. Hodges, Alexander Staruschenko
Published November 24, 2020
Citation Information: JCI Insight. 2021;6(1):e143251. https://doi.org/10.1172/jci.insight.143251.
View: Text | PDF
Research Article Neuroscience

Kcnj16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat

  • Text
  • PDF
Abstract

Kir5.1 is an inwardly rectifying potassium (Kir) channel subunit abundantly expressed in the kidney and brain. We previously established the physiologic consequences of a Kcnj16 (gene encoding Kir5.1) knockout in the Dahl salt-sensitive rat (SSKcnj16–/–), which caused electrolyte/pH dysregulation and high-salt diet–induced mortality. Since Kir channel gene mutations may alter neuronal excitability and are linked to human seizure disorders, we hypothesized that SSKcnj16–/– rats would exhibit neurological phenotypes, including increased susceptibility to seizures. SSKcnj16–/– rats exhibited increased light sensitivity (fMRI) and reproducible sound-induced tonic-clonic audiogenic seizures confirmed by electroencephalography. Repeated seizure induction altered behavior, exacerbated hypokalemia, and led to approximately 38% mortality in male SSKcnj16–/– rats. Dietary potassium supplementation did not prevent audiogenic seizures but mitigated hypokalemia and prevented mortality induced by repeated seizures. These results reveal a distinct, nonredundant role for Kir5.1 channels in the brain, introduce a rat model of audiogenic seizures, and suggest that yet-to-be identified mutations in Kcnj16 may cause or contribute to seizure disorders.

Authors

Anna D. Manis, Oleg Palygin, Elena Isaeva, Vladislav Levchenko, Peter S. LaViolette, Tengis S. Pavlov, Matthew R. Hodges, Alexander Staruschenko

×
Options: View larger image (or click on image) Download as PowerPoint
Description of behavioral scoring of seizure severity adapted from the R...

Description of behavioral scoring of seizure severity adapted from the Racine scale


Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts