Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

A simple protein-based surrogate neutralization assay for SARS-CoV-2
Kento T. Abe, … , James M. Rini, Anne-Claude Gingras
Kento T. Abe, … , James M. Rini, Anne-Claude Gingras
Published September 1, 2020
Citation Information: JCI Insight. 2020;5(19):e142362. https://doi.org/10.1172/jci.insight.142362.
View: Text | PDF
Research Article Infectious disease

A simple protein-based surrogate neutralization assay for SARS-CoV-2

  • Text
  • PDF
Abstract

Most of the patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mount a humoral immune response to the virus within a few weeks of infection, but the duration of this response and how it correlates with clinical outcomes has not been completely characterized. Of particular importance is the identification of immune correlates of infection that would support public health decision-making on treatment approaches, vaccination strategies, and convalescent plasma therapy. While ELISA-based assays to detect and quantitate antibodies to SARS-CoV-2 in patient samples have been developed, the detection of neutralizing antibodies typically requires more demanding cell-based viral assays. Here, we present a safe and efficient protein-based assay for the detection of serum and plasma antibodies that block the interaction of the SARS-CoV-2 spike protein receptor binding domain (RBD) with its receptor, angiotensin-converting enzyme 2 (ACE2). The assay serves as a surrogate neutralization assay and is performed on the same platform and in parallel with an ELISA for the detection of antibodies against the RBD, enabling a direct comparison. The results obtained with our assay correlate with those of 2 viral-based assays, a plaque reduction neutralization test (PRNT) that uses live SARS-CoV-2 virus and a spike pseudotyped viral vector–based assay.

Authors

Kento T. Abe, Zhijie Li, Reuben Samson, Payman Samavarchi-Tehrani, Emelissa J. Valcourt, Heidi Wood, Patrick Budylowski, Alan P. Dupuis II, Roxie C. Girardin, Bhavisha Rathod, Jenny H. Wang, Miriam Barrios-Rodiles, Karen Colwill, Allison J. McGeer, Samira Mubareka, Jennifer L. Gommerman, Yves Durocher, Mario Ostrowski, Kathleen A. McDonough, Michael A. Drebot, Steven J. Drews, James M. Rini, Anne-Claude Gingras

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,203 233
PDF 114 42
Figure 147 3
Supplemental data 100 6
Citation downloads 138 0
Totals 1,702 284
Total Views 1,986
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts