Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Therapeutic MK2 inhibition blocks pathological vascular smooth muscle cell phenotype switch
J. William Tierney, … , Colleen M. Brophy, Craig L. Duvall
J. William Tierney, … , Colleen M. Brophy, Craig L. Duvall
Published October 8, 2021
Citation Information: JCI Insight. 2021;6(19):e142339. https://doi.org/10.1172/jci.insight.142339.
View: Text | PDF
Research Article Vascular biology

Therapeutic MK2 inhibition blocks pathological vascular smooth muscle cell phenotype switch

  • Text
  • PDF
Abstract

Vascular procedures, such as stenting, angioplasty, and bypass grafting, often fail due to intimal hyperplasia (IH), wherein contractile vascular smooth muscle cells (VSMCs) dedifferentiate to synthetic VSMCs, which are highly proliferative, migratory, and fibrotic. Previous studies suggest MAPK-activated protein kinase 2 (MK2) inhibition may limit VSMC proliferation and IH, although the molecular mechanism underlying the observation remains unclear. We demonstrated here that MK2 inhibition blocked the molecular program of contractile to synthetic dedifferentiation and mitigated IH development. Molecular markers of the VSMC contractile phenotype were sustained over time in culture in rat primary VSMCs treated with potent, long-lasting MK2 inhibitory peptide nanopolyplexes (MK2i-NPs), a result supported in human saphenous vein specimens cultured ex vivo. RNA-Seq of MK2i-NP–treated primary human VSMCs revealed programmatic switching toward a contractile VSMC gene expression profile, increasing expression of antiinflammatory and contractile-associated genes while lowering expression of proinflammatory, promigratory, and synthetic phenotype–associated genes. Finally, these results were confirmed using an in vivo rabbit vein graft model where brief, intraoperative treatment with MK2i-NPs decreased IH and synthetic phenotype markers while preserving contractile proteins. These results support further development of MK2i-NPs as a therapy for blocking VSMC phenotype switch and IH associated with cardiovascular procedures.

Authors

J. William Tierney, Brian C. Evans, Joyce Cheung-Flynn, Bo Wang, Juan M. Colazo, Monica E. Polcz, Rebecca S. Cook, Colleen M. Brophy, Craig L. Duvall

×

Figure 4

RNA-Seq analysis of primary HCA-SMCs after MK2i-NP treatment shows decreased expression of synthetic genes while maintaining expression of contractile genes.

Options: View larger image (or click on image) Download as PowerPoint
RNA-Seq analysis of primary HCA-SMCs after MK2i-NP treatment shows decre...
(A) Primary HCA-SMCs obtained from 3 patients were cultured out to P5 in 20% serum with either no treatment or 50 μM MK2i-NPs for 2 hours at each passage. RNA was harvested and sequenced to determine differences in genetic expression after MK2i-NP treatment. (B) Overall gene expression differences between treated and untreated cells for the 3 biological replicates. Relative expression levels for genes related to (C) fibrosis and ECM production, (E) inflammation, (G) proliferation, and (I) contractile machinery are plotted in a heatmap with raw reads for select genes from each plotted in D, F, H, and J, respectively.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts