Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Downregulation of epithelial DUOX1 in chronic obstructive pulmonary disease
Caspar Schiffers, Cheryl van de Wetering, Robert A. Bauer, Aida Habibovic, Milena Hristova, Christopher M. Dustin, Sara Lambrichts, Pamela M. Vacek, Emiel F.M. Wouters, Niki L. Reynaert, Albert van der Vliet
Caspar Schiffers, Cheryl van de Wetering, Robert A. Bauer, Aida Habibovic, Milena Hristova, Christopher M. Dustin, Sara Lambrichts, Pamela M. Vacek, Emiel F.M. Wouters, Niki L. Reynaert, Albert van der Vliet
View: Text | PDF
Research Article Cell biology Pulmonology

Downregulation of epithelial DUOX1 in chronic obstructive pulmonary disease

  • Text
  • PDF
Abstract

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized by small airway remodeling and alveolar emphysema due to environmental stresses such as cigarette smoking (CS). Oxidative stress is commonly implicated in COPD pathology, but recent findings suggest that one oxidant-producing NADPH oxidase homolog, dual oxidase 1 (DUOX1), is downregulated in the airways of patients with COPD. We evaluated lung tissue sections from patients with COPD for small airway epithelial DUOX1 protein expression, in association with measures of lung function and small airway and alveolar remodeling. We also addressed the impact of DUOX1 for lung tissue remodeling in mouse models of COPD. Small airway DUOX1 levels were decreased in advanced COPD and correlated with loss of lung function and markers of emphysema and remodeling. Similarly, DUOX1 downregulation in correlation with extracellular matrix remodeling was observed in a genetic model of COPD, transgenic SPC-TNF-α mice. Finally, development of subepithelial airway fibrosis in mice due to exposure to the CS-component acrolein, or alveolar emphysema induced by administration of elastase, were in both cases exacerbated in Duox1-deficient mice. Collectively, our studies highlight that downregulation of DUOX1 may be a contributing feature of COPD pathogenesis, likely related to impaired DUOX1-mediated innate injury responses involved in epithelial homeostasis.

Authors

Caspar Schiffers, Cheryl van de Wetering, Robert A. Bauer, Aida Habibovic, Milena Hristova, Christopher M. Dustin, Sara Lambrichts, Pamela M. Vacek, Emiel F.M. Wouters, Niki L. Reynaert, Albert van der Vliet

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 514 139
PDF 115 33
Figure 349 2
Table 55 0
Supplemental data 63 2
Citation downloads 98 0
Totals 1,194 176
Total Views 1,370
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts