Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
STOX1 deficiency is associated with renin-mediated gestational hypertension and placental defects
Jacqueline G. Parchem, … , Vincent H. Gattone II, Raghu Kalluri
Jacqueline G. Parchem, … , Vincent H. Gattone II, Raghu Kalluri
Published December 10, 2020
Citation Information: JCI Insight. 2021;6(2):e141588. https://doi.org/10.1172/jci.insight.141588.
View: Text | PDF
Research Article Cardiology Reproductive biology

STOX1 deficiency is associated with renin-mediated gestational hypertension and placental defects

  • Text
  • PDF
Abstract

The pathogenesis of preeclampsia and other hypertensive disorders of pregnancy remains poorly defined despite the substantial burden of maternal and neonatal morbidity associated with these conditions. In particular, the role of genetic variants as determinants of disease susceptibility is understudied. Storkhead-box protein 1 (STOX1) was first identified as a preeclampsia risk gene through family-based genetic linkage studies in which loss-of-function variants were proposed to underlie increased preeclampsia susceptibility. We generated a genetic Stox1 loss-of-function mouse model (Stox1 KO) to evaluate whether STOX1 regulates blood pressure in pregnancy. Pregnant Stox1-KO mice developed gestational hypertension evidenced by a significant increase in blood pressure compared with WT by E17.5. While severe renal, placental, or fetal growth abnormalities were not observed, the Stox1-KO phenotype was associated with placental vascular and extracellular matrix abnormalities. Mechanistically, we found that gestational hypertension in Stox1-KO mice resulted from activation of the uteroplacental renin-angiotensin system. This mechanism was supported by showing that treatment of pregnant Stox1-KO mice with an angiotensin II receptor blocker rescued the phenotype. Our study demonstrates the utility of genetic mouse models for uncovering links between genetic variants and effector pathways implicated in the pathogenesis of hypertensive disorders of pregnancy.

Authors

Jacqueline G. Parchem, Keizo Kanasaki, Soo Bong Lee, Megumi Kanasaki, Joyce L. Yang, Yong Xu, Kadeshia M. Earl, Rachel A. Keuls, Vincent H. Gattone II, Raghu Kalluri

×

Full Text PDF | Download (2.50 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts