Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Antibody-mediated depletion of CCR10+EphA3+ cells ameliorates fibrosis in IPF
Miriam S. Hohmann, … , Lynne A. Murray, Cory M. Hogaboam
Miriam S. Hohmann, … , Lynne A. Murray, Cory M. Hogaboam
Published May 4, 2021
Citation Information: JCI Insight. 2021;6(11):e141061. https://doi.org/10.1172/jci.insight.141061.
View: Text | PDF
Research Article Pulmonology

Antibody-mediated depletion of CCR10+EphA3+ cells ameliorates fibrosis in IPF

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant repair that diminishes lung function via mechanisms that remain poorly understood. CC chemokine receptor (CCR10) and its ligand CCL28 were both elevated in IPF compared with normal donors. CCR10 was highly expressed by various cells from IPF lungs, most notably stage-specific embryonic antigen-4–positive mesenchymal progenitor cells (MPCs). In vitro, CCL28 promoted the proliferation of CCR10+ MPCs while CRISPR/Cas9–mediated targeting of CCR10 resulted in the death of MPCs. Following the intravenous injection of various cells from IPF lungs into immunodeficient (NOD/SCID-γ, NSG) mice, human CCR10+ cells initiated and maintained fibrosis in NSG mice. Eph receptor A3 (EphA3) was among the highest expressed receptor tyrosine kinases detected on IPF CCR10+ cells. Ifabotuzumab-targeted killing of EphA3+ cells significantly reduced the numbers of CCR10+ cells and ameliorated pulmonary fibrosis in humanized NSG mice. Thus, human CCR10+ cells promote pulmonary fibrosis, and EphA3 mAb–directed elimination of these cells inhibits lung fibrosis.

Authors

Miriam S. Hohmann, David M. Habiel, Milena S. Espindola, Guanling Huang, Isabelle Jones, Rohan Narayanan, Ana Lucia Coelho, Justin M. Oldham, Imre Noth, Shwu-Fan Ma, Adrianne Kurkciyan, Jonathan L. McQualter, Gianni Carraro, Barry Stripp, Peter Chen, Dianhua Jiang, Paul W. Noble, William Parks, John Woronicz, Geoffrey Yarranton, Lynne A. Murray, Cory M. Hogaboam

×

Full Text PDF | Download (3.79 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts