Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist
Francis S. Willard, Jonathan D. Douros, Maria B.N. Gabe, Aaron D. Showalter, David B. Wainscott, Todd M. Suter, Megan E. Capozzi, Wijnand J.C. van der Velden, Cynthia Stutsman, Guemalli R. Cardona, Shweta Urva, Paul J. Emmerson, Jens J. Holst, David A. D’Alessio, Matthew P. Coghlan, Mette M. Rosenkilde, Jonathan E. Campbell, Kyle W. Sloop
Francis S. Willard, Jonathan D. Douros, Maria B.N. Gabe, Aaron D. Showalter, David B. Wainscott, Todd M. Suter, Megan E. Capozzi, Wijnand J.C. van der Velden, Cynthia Stutsman, Guemalli R. Cardona, Shweta Urva, Paul J. Emmerson, Jens J. Holst, David A. D’Alessio, Matthew P. Coghlan, Mette M. Rosenkilde, Jonathan E. Campbell, Kyle W. Sloop
View: Text | PDF
Research Article Therapeutics

Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist

  • Text
  • PDF
Abstract

Tirzepatide (LY3298176) is a dual GIP and GLP-1 receptor agonist under development for the treatment of type 2 diabetes mellitus (T2DM), obesity, and nonalcoholic steatohepatitis. Early phase trials in T2DM indicate that tirzepatide improves clinical outcomes beyond those achieved by a selective GLP-1 receptor agonist. Therefore, we hypothesized that the integrated potency and signaling properties of tirzepatide provide a unique pharmacological profile tailored for improving broad metabolic control. Here, we establish methodology for calculating occupancy of each receptor for clinically efficacious doses of the drug. This analysis reveals a greater degree of engagement of tirzepatide for the GIP receptor than the GLP-1 receptor, corroborating an imbalanced mechanism of action. Pharmacologically, signaling studies demonstrate that tirzepatide mimics the actions of native GIP at the GIP receptor but shows bias at the GLP-1 receptor to favor cAMP generation over β-arrestin recruitment, coincident with a weaker ability to drive GLP-1 receptor internalization compared with GLP-1. Experiments in primary islets reveal β-arrestin1 limits the insulin response to GLP-1, but not GIP or tirzepatide, suggesting that the biased agonism of tirzepatide enhances insulin secretion. Imbalance toward GIP receptor, combined with distinct signaling properties at the GLP-1 receptor, together may account for the promising efficacy of this investigational agent.

Authors

Francis S. Willard, Jonathan D. Douros, Maria B.N. Gabe, Aaron D. Showalter, David B. Wainscott, Todd M. Suter, Megan E. Capozzi, Wijnand J.C. van der Velden, Cynthia Stutsman, Guemalli R. Cardona, Shweta Urva, Paul J. Emmerson, Jens J. Holst, David A. D’Alessio, Matthew P. Coghlan, Mette M. Rosenkilde, Jonathan E. Campbell, Kyle W. Sloop

×

Figure 2

Tirzepatide (TZP) differentially induces internalization of the GIP and GLP-1 receptors.

Options: View larger image (or click on image) Download as PowerPoint
Tirzepatide (TZP) differentially induces internalization of the GIP and ...
(A–D) The time course of internalization of GIPR (A and C) and GLP-1R (B and D) was assessed using changes in cell surface presentation of SNAP-tagged receptors in HEK293A cells. Receptor internalization induced by increasing concentrations of GIP(1-42) (A), GLP-1(7-36) (B), or tirzepatide (C, GIPR; D, GLP-1R) over time relative to the maximum signal for either GIP(1-42) (1 μM) or GLP-1(7-36) (1 μM) is shown. (E–H) Studies using receptors containing an N-terminal HA-epitope tag and a C-terminal EGFP fusion are presented. (E) Changes in surface GIPR 60 minutes after treatment with ligand were measured by anti-HA immunofluorescence. Data are normalized to 1 μM GIP(1-42) values. For GIPR, tirzepatide induced internalization with an EC50 (SEM, n) of 18.1 nM (5.7, 4), while GIP(1-42) displayed a potency of 18.2 nM (9.7, 4). (G) Representative confocal images of HA-GIPR-EGFP cells detecting EGFP fluorescence following treatment with vehicle, 100 nM GIP(1-42), or 100 nM tirzepatide. (F) Changes in surface GLP-1R 30 minutes after treatment with ligand detected by anti-HA immunofluorescence. Data are normalized to 1 μM GLP-1(7-36) values. For GLP-1R, tirzepatide was partially efficacious at 43.6% (7.9, 3) with an EC50 of 101.9 nM (29.8, 3), while GLP-1(7-36) showed a potency of 22.2 nM (1.86, 3). (H) Representative confocal images of HA–GLP-1R–EGFP cells detecting EGFP fluorescence following treatment with vehicle, 100 nM GLP-1(7-36), or 100 nM tirzepatide. Scale bars: 20 μm.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts