Somatic KRAS mutations are highly prevalent in many cancers. In addition, a distinct spectrum of germline KRAS mutations causes developmental disorders called RASopathies. The mutant proteins encoded by these germline KRAS mutations are less biochemically and functionally activated than those in cancer. We generated mice harboring conditional KrasLSL-P34Rand KrasLSL-T58I knock-in alleles and characterized the consequences of each mutation in vivo. Embryonic expression of KrasT58I resulted in craniofacial abnormalities reminiscent of those seen in RASopathy disorders, and these mice exhibited hyperplastic growth of multiple organs, modest alterations in cardiac valvulogenesis, myocardial hypertrophy, and myeloproliferation. By contrast, embryonic KrasP34R expression resulted in early perinatal lethality from respiratory failure due to defective lung sacculation, which was associated with aberrant ERK activity in lung epithelial cells. Somatic Mx1-Cre–mediated activation in the hematopoietic compartment showed that KrasP34R and KrasT58I expression had distinct signaling effects, despite causing a similar spectrum of hematologic diseases. These potentially novel strains are robust models for investigating the consequences of expressing endogenous levels of hyperactive K-Ras in different developing and adult tissues, for comparing how oncogenic and germline K-Ras proteins perturb signaling networks and cell fate decisions, and for performing preclinical therapeutic trials.
Jasmine C. Wong, Pedro A. Perez-Mancera, Tannie Q. Huang, Jangkyung Kim, Joaquim Grego-Bessa, Maria del pilar Alzamora, Scott C. Kogan, Amnon Sharir, Susan H. Keefe, Carolina E. Morales, Denny Schanze, Pau Castel, Kentaro Hirose, Guo N. Huang, Martin Zenker, Dean Sheppard, Ophir D. Klein, David A. Tuveson, Benjamin S. Braun, Kevin Shannon
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 452 | 205 |
45 | 28 | |
Figure | 210 | 0 |
Table | 18 | 0 |
Supplemental data | 36 | 3 |
Citation downloads | 34 | 0 |
Totals | 795 | 236 |
Total Views | 1,031 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.