Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

ETV6 germline mutations cause HDAC3/NCOR2 mislocalization and upregulation of interferon response genes
Marlie H. Fisher, Gregory D. Kirkpatrick, Brett Stevens, Courtney Jones, Michael Callaghan, Madhvi Rajpurkar, Joy Fulbright, Megan A. Cooper, Jesse Rowley, Christopher C. Porter, Arthur Gutierrez-Hartmann, Kenneth Jones, Craig Jordan, Eric M. Pietras, Jorge Di Paola
Marlie H. Fisher, Gregory D. Kirkpatrick, Brett Stevens, Courtney Jones, Michael Callaghan, Madhvi Rajpurkar, Joy Fulbright, Megan A. Cooper, Jesse Rowley, Christopher C. Porter, Arthur Gutierrez-Hartmann, Kenneth Jones, Craig Jordan, Eric M. Pietras, Jorge Di Paola
View: Text | PDF
Research Article Hematology

ETV6 germline mutations cause HDAC3/NCOR2 mislocalization and upregulation of interferon response genes

  • Text
  • PDF
Abstract

ETV6 is an ETS family transcription factor that plays a key role in hematopoiesis and megakaryocyte development. Our group and others have identified germline mutations in ETV6 resulting in autosomal dominant thrombocytopenia and predisposition to malignancy; however, molecular mechanisms defining the role of ETV6 in megakaryocyte development have not been well established. Using a combination of molecular, biochemical, and sequencing approaches in patient-derived PBMCs, we demonstrate abnormal cytoplasmic localization of ETV6 and the HDAC3/NCOR2 repressor complex that led to overexpression of HDAC3-regulated interferon response genes. This transcriptional dysregulation was also reflected in patient-derived platelet transcripts and drove aberrant proplatelet formation in megakaryocytes. Our results suggest that aberrant transcription may predispose patients with ETV6 mutations to bone marrow inflammation, dysplasia, and megakaryocyte dysfunction.

Authors

Marlie H. Fisher, Gregory D. Kirkpatrick, Brett Stevens, Courtney Jones, Michael Callaghan, Madhvi Rajpurkar, Joy Fulbright, Megan A. Cooper, Jesse Rowley, Christopher C. Porter, Arthur Gutierrez-Hartmann, Kenneth Jones, Craig Jordan, Eric M. Pietras, Jorge Di Paola

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 591 218
PDF 93 33
Figure 167 4
Supplemental data 57 10
Citation downloads 94 0
Totals 1,002 265
Total Views 1,267
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts