Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Impaired muscle mitochondrial energetics is associated with uremic metabolite accumulation in chronic kidney disease
Trace Thome, Ravi A. Kumar, Sarah K. Burke, Ram B. Khattri, Zachary R. Salyers, Rachel C. Kelley, Madeline D. Coleman, Demetra D. Christou, Russell T. Hepple, Salvatore T. Scali, Leonardo F. Ferreira, Terence E. Ryan
Trace Thome, Ravi A. Kumar, Sarah K. Burke, Ram B. Khattri, Zachary R. Salyers, Rachel C. Kelley, Madeline D. Coleman, Demetra D. Christou, Russell T. Hepple, Salvatore T. Scali, Leonardo F. Ferreira, Terence E. Ryan
View: Text | PDF
Research Article Muscle biology Nephrology

Impaired muscle mitochondrial energetics is associated with uremic metabolite accumulation in chronic kidney disease

  • Text
  • PDF
Abstract

Chronic kidney disease (CKD) causes progressive skeletal myopathy involving atrophy, weakness, and fatigue. Mitochondria have been thought to contribute to skeletal myopathy; however, the molecular mechanisms underlying muscle metabolism changes in CKD are unknown. We employed a comprehensive mitochondrial phenotyping platform to elucidate the mechanisms of skeletal muscle mitochondrial impairment in mice with adenine-induced CKD. CKD mice displayed significant reductions in mitochondrial oxidative phosphorylation (OXPHOS), which was strongly correlated with glomerular filtration rate, suggesting a link between kidney function and muscle mitochondrial health. Biochemical assays uncovered that OXPHOS dysfunction was driven by reduced activity of matrix dehydrogenases. Untargeted metabolomics analyses in skeletal muscle revealed a distinct metabolite profile in CKD muscle including accumulation of uremic toxins that strongly associated with the degree of mitochondrial impairment. Additional muscle phenotyping found CKD mice experienced muscle atrophy and increased muscle protein degradation, but only male CKD mice had lower maximal contractile force. CKD mice had morphological changes indicative of destabilization in the neuromuscular junction. This study provides the first comprehensive evaluation of mitochondrial health in murine CKD muscle to our knowledge and uncovers several unknown uremic metabolites that strongly associate with the degree of mitochondrial impairment.

Authors

Trace Thome, Ravi A. Kumar, Sarah K. Burke, Ram B. Khattri, Zachary R. Salyers, Rachel C. Kelley, Madeline D. Coleman, Demetra D. Christou, Russell T. Hepple, Salvatore T. Scali, Leonardo F. Ferreira, Terence E. Ryan

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 1,192 277
PDF 205 39
Figure 718 6
Supplemental data 115 14
Citation downloads 92 0
Totals 2,322 336
Total Views 2,658
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts