Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Fighting Staphylococcus aureus infections with light and photoimmunoconjugates
Mafalda Bispo, Andrea Anaya-Sanchez, Sabrina Suhani, Elisa J. M. Raineri, Marina López-Álvarez, Marjolein Heuker, Wiktor Szymański, Francisco Romero Pastrana, Girbe Buist, Alexander R. Horswill, Kevin P. Francis, Gooitzen M. van Dam, Marleen van Oosten, Jan Maarten van Dijl
Mafalda Bispo, Andrea Anaya-Sanchez, Sabrina Suhani, Elisa J. M. Raineri, Marina López-Álvarez, Marjolein Heuker, Wiktor Szymański, Francisco Romero Pastrana, Girbe Buist, Alexander R. Horswill, Kevin P. Francis, Gooitzen M. van Dam, Marleen van Oosten, Jan Maarten van Dijl
View: Text | PDF
Resource and Technical Advance Microbiology Therapeutics

Fighting Staphylococcus aureus infections with light and photoimmunoconjugates

  • Text
  • PDF
Abstract

Infections caused by multidrug-resistant Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), are responsible for high mortality and morbidity worldwide. Resistant lineages were previously confined to hospitals but are now also causing infections among healthy individuals in the community. It is therefore imperative to explore therapeutic avenues that are less prone to raise drug resistance compared with today’s antibiotics. An opportunity to achieve this ambitious goal could be provided by targeted antimicrobial photodynamic therapy (aPDT), which relies on the combination of a bacteria-specific targeting agent and light-induced generation of ROS by an appropriate photosensitizer. Here, we conjugated the near-infrared photosensitizer IRDye700DX to a fully human mAb, specific for the invariantly expressed staphylococcal antigen immunodominant staphylococcal antigen A (IsaA). The resulting immunoconjugate 1D9-700DX was characterized biochemically and in preclinical infection models. As demonstrated in vitro, in vivo, and in a human postmortem orthopedic implant infection model, targeted aPDT with 1D9-700DX is highly effective. Importantly, combined with the nontoxic aPDT-enhancing agent potassium iodide, 1D9-700DX overcomes the antioxidant properties of human plasma and fully eradicates high titers of MRSA. We show that the developed immunoconjugate 1D9-700DX targets MRSA and kills it upon illumination with red light, without causing collateral damage to human cells.

Authors

Mafalda Bispo, Andrea Anaya-Sanchez, Sabrina Suhani, Elisa J. M. Raineri, Marina López-Álvarez, Marjolein Heuker, Wiktor Szymański, Francisco Romero Pastrana, Girbe Buist, Alexander R. Horswill, Kevin P. Francis, Gooitzen M. van Dam, Marleen van Oosten, Jan Maarten van Dijl

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 779 3,630
PDF 162 36
Figure 397 6
Supplemental data 104 7
Citation downloads 151 0
Totals 1,593 3,679
Total Views 5,272
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts