Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Colorectal cancer cells utilize autophagy to maintain mitochondrial metabolism for cell proliferation under nutrient stress
Samantha N. Devenport, Rashi Singhal, Megan D. Radyk, Joseph G. Taranto, Samuel A. Kerk, Brandon Chen, Joshua W. Goyert, Chesta Jain, Nupur K. Das, Katherine Oravecz-Wilson, Li Zhang, Joel K. Greenson, Y. Eugene Chen, Scott A. Soleimanpour, Pavan Reddy, Costas A. Lyssiotis, Yatrik M. Shah
Samantha N. Devenport, Rashi Singhal, Megan D. Radyk, Joseph G. Taranto, Samuel A. Kerk, Brandon Chen, Joshua W. Goyert, Chesta Jain, Nupur K. Das, Katherine Oravecz-Wilson, Li Zhang, Joel K. Greenson, Y. Eugene Chen, Scott A. Soleimanpour, Pavan Reddy, Costas A. Lyssiotis, Yatrik M. Shah
View: Text | PDF
Research Article Gastroenterology Oncology

Colorectal cancer cells utilize autophagy to maintain mitochondrial metabolism for cell proliferation under nutrient stress

  • Text
  • PDF
Abstract

Cancer cells reprogram cellular metabolism to maintain adequate nutrient pools to sustain proliferation. Moreover, autophagy is a regulated mechanism to break down dysfunctional cellular components and recycle cellular nutrients. However, the requirement for autophagy and the integration in cancer cell metabolism is not clear in colon cancer. Here, we show a cell-autonomous dependency of autophagy for cell growth in colorectal cancer. Loss of epithelial autophagy inhibits tumor growth in both sporadic and colitis-associated cancer models. Genetic and pharmacological inhibition of autophagy inhibits cell growth in colon cancer–derived cell lines and patient-derived enteroid models. Importantly, normal colon epithelium and patient-derived normal enteroid growth were not decreased following autophagy inhibition. To couple the role of autophagy to cellular metabolism, a cell culture screen in conjunction with metabolomic analysis was performed. We identified a critical role of autophagy to maintain mitochondrial metabolites for growth. Loss of mitochondrial recycling through inhibition of mitophagy hinders colon cancer cell growth. These findings have revealed a cell-autonomous role of autophagy that plays a critical role in regulating nutrient pools in vivo and in cell models, and it provides therapeutic targets for colon cancer.

Authors

Samantha N. Devenport, Rashi Singhal, Megan D. Radyk, Joseph G. Taranto, Samuel A. Kerk, Brandon Chen, Joshua W. Goyert, Chesta Jain, Nupur K. Das, Katherine Oravecz-Wilson, Li Zhang, Joel K. Greenson, Y. Eugene Chen, Scott A. Soleimanpour, Pavan Reddy, Costas A. Lyssiotis, Yatrik M. Shah

×

Figure 2

Epithelial loss of autophagy inhibits tumor growth in a sporadic colon cancer model.

Options: View larger image (or click on image) Download as PowerPoint
Epithelial loss of autophagy inhibits tumor growth in a sporadic colon c...
(A–D) Body weights, tumor number and burden, quantification of Ki67 staining from normal and tumor tissue, and a representative image of Ki67 staining. (E) Representative flow blot demonstrating gating strategy of immune cell types. (F) Quantitation from flow cytometry of immune cells in Cdx2-ERT2Cre;Apcfl/fl (n = 10; tumor quantitation and n = 7; flow cytometry) and Cdx2-ERT2Cre;Apcfl/fl;Atg5fl/fl (n = 9; tumor quantitation and n = 7; flow cytometry) mice. Tumors were assessed at 6 weeks following tamoxifen treatment, and flow cytometry was assessed at 2 weeks following tamoxifen treatment. *P < 0.05, **P < 0.01 using unpaired t test. Data are represented as mean ± SEM. This experiment was repeated twice.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts