Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
ANGPTL8 has both endocrine and autocrine effects on substrate utilization
Federico Oldoni, … , Jonathan C. Cohen, Helen H. Hobbs
Federico Oldoni, … , Jonathan C. Cohen, Helen H. Hobbs
Published July 30, 2020
Citation Information: JCI Insight. 2020;5(17):e138777. https://doi.org/10.1172/jci.insight.138777.
View: Text | PDF
Research Article Endocrinology Metabolism

ANGPTL8 has both endocrine and autocrine effects on substrate utilization

  • Text
  • PDF
Abstract

The angiopoietin-like protein ANGPTL8 (A8) is one of 3 ANGPTLs (A8, A3, A4) that coordinate changes in triglyceride (TG) delivery to tissues by inhibiting lipoprotein lipase (LPL), an enzyme that hydrolyzes TG. Previously we showed that A8, which is expressed in liver and adipose tissue, is required to redirect dietary TG from oxidative to storage tissues following food intake. Here we show that A8 from liver and adipose tissue have different roles in this process. Mice lacking hepatic A8 have no circulating A8, high intravascular LPL activity, low plasma TG levels, and evidence of decreased delivery of dietary lipids to adipose tissue. In contrast, mice lacking A8 in adipose tissue have higher postprandial TG levels and similar intravascular LPL activity and plasma A8 levels and higher levels of plasma TG. Expression of A8, together with A4, in cultured cells reduced A4 secretion and A4-mediated LPL inhibition. Thus, hepatic A8 (with A3) acts in an endocrine fashion to inhibit intravascular LPL in oxidative tissues, whereas A8 in adipose tissue enhances LPL activity by autocrine/paracrine inhibition of A4. These combined actions of A8 ensure that TG stores are rapidly replenished and sufficient energy is available until the next meal.

Authors

Federico Oldoni, Haili Cheng, Serena Banfi, Viktoria Gusarova, Jonathan C. Cohen, Helen H. Hobbs

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (6.32 MB)

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts