Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Conditional Myh9 and Myh10 inactivation in adult mouse renal epithelium results in progressive kidney disease
Karla L. Otterpohl, Brook W. Busselman, Ishara Ratnayake, Ryan G. Hart, Kimberly R. Hart, Claire M. Evans, Carrie L. Phillips, Jordan R. Beach, Phil Ahrenkiel, Bruce A. Molitoris, Kameswaran Surendran, Indra Chandrasekar
Karla L. Otterpohl, Brook W. Busselman, Ishara Ratnayake, Ryan G. Hart, Kimberly R. Hart, Claire M. Evans, Carrie L. Phillips, Jordan R. Beach, Phil Ahrenkiel, Bruce A. Molitoris, Kameswaran Surendran, Indra Chandrasekar
View: Text | PDF
Research Article Cell biology Nephrology

Conditional Myh9 and Myh10 inactivation in adult mouse renal epithelium results in progressive kidney disease

  • Text
  • PDF
Abstract

Actin-associated nonmuscle myosin II (NM2) motor proteins play critical roles in a myriad of cellular functions, including endocytosis and organelle transport pathways. Cell type–specific expression and unique subcellular localization of the NM2 proteins, encoded by the Myh9 and Myh10 genes, in the mouse kidney tubules led us to hypothesize that these proteins have specialized functional roles within the renal epithelium. Inducible conditional knockout (cKO) of Myh9 and Myh10 in the renal tubules of adult mice resulted in progressive kidney disease. Prior to overt renal tubular injury, we observed intracellular accumulation of the glycosylphosphatidylinositol-anchored protein uromodulin (UMOD) and gradual loss of Na+ K+ 2Cl– cotransporter from the apical membrane of the thick ascending limb epithelia. The UMOD accumulation coincided with expansion of endoplasmic reticulum (ER) tubules and activation of ER stress and unfolded protein response pathways in Myh9&10-cKO kidneys. We conclude that NM2 proteins are required for localization and transport of UMOD and loss of function results in accumulation of UMOD and ER stress–mediated progressive renal tubulointerstitial disease. These observations establish cell type–specific role(s) for NM2 proteins in regulation of specialized renal epithelial transport pathways and reveal the possibility that human kidney disease associated with MYH9 mutations could be of renal epithelial origin.

Authors

Karla L. Otterpohl, Brook W. Busselman, Ishara Ratnayake, Ryan G. Hart, Kimberly R. Hart, Claire M. Evans, Carrie L. Phillips, Jordan R. Beach, Phil Ahrenkiel, Bruce A. Molitoris, Kameswaran Surendran, Indra Chandrasekar

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 618 199
PDF 100 38
Figure 414 22
Supplemental data 233 14
Citation downloads 68 0
Totals 1,433 273
Total Views 1,706
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts