Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Selective targeting of KRAS-driven lung tumorigenesis via unresolved ER stress
Iwao Shimomura, Naoaki Watanabe, Tomofumi Yamamoto, Minami Kumazaki, Yuji Tada, Koichiro Tatsumi, Takahiro Ochiya, Yusuke Yamamoto
Iwao Shimomura, Naoaki Watanabe, Tomofumi Yamamoto, Minami Kumazaki, Yuji Tada, Koichiro Tatsumi, Takahiro Ochiya, Yusuke Yamamoto
View: Text | PDF
Research Article Cell biology Oncology

Selective targeting of KRAS-driven lung tumorigenesis via unresolved ER stress

  • Text
  • PDF
Abstract

Lung cancer with oncogenic KRAS makes up a significant proportion of lung cancers and is accompanied by a poor prognosis. Recent advances in understanding the molecular pathogenesis of lung cancer with oncogenic KRAS have enabled the development of drugs, yet mutated KRAS remains undruggable. We performed small-molecule library screening and identified verteporfin, a yes-associated protein 1 (YAP1) inhibitor; verteporfin treatment markedly reduced cell viability in KRAS-mutant lung cancer cells in vitro and suppressed KRAS-driven lung tumorigenesis in vivo. Comparative functional analysis of verteporfin treatment and YAP1 knockdown with siRNA revealed that the cytotoxic effect of verteporfin was at least partially independent of YAP1 inhibition. A whole-transcriptome approach revealed the distinct expression profiles in KRAS-mutant lung cancer cells between verteporfin treatment and YAP1 knockdown and identified the selective involvement of the ER stress pathway in the effects of verteporfin treatment in KRAS-mutant lung cancer, leading to apoptotic cell death. These data provide novel insight to uncover vulnerabilities in KRAS-driven lung tumorigenesis.

Authors

Iwao Shimomura, Naoaki Watanabe, Tomofumi Yamamoto, Minami Kumazaki, Yuji Tada, Koichiro Tatsumi, Takahiro Ochiya, Yusuke Yamamoto

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 393 99
PDF 85 17
Figure 228 5
Table 39 0
Supplemental data 53 4
Citation downloads 72 0
Totals 870 125
Total Views 995

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts