Mycobacterium tuberculosis–specific (M. tuberculosis–specific) T cell responses associated with immune control during asymptomatic latent tuberculosis infection (LTBI) remain poorly understood. Using a nonhuman primate aerosol model, we studied the kinetics, phenotypes, and functions of M. tuberculosis antigen-specific T cells in peripheral and lung compartments of M. tuberculosis–infected asymptomatic rhesus macaques by longitudinally sampling blood and bronchoalveolar lavage, for up to 24 weeks postinfection. We found substantially higher frequencies of M. tuberculosis–specific effector and memory CD4+ and CD8+ T cells producing IFN-γ in the airways compared with peripheral blood, and these frequencies were maintained throughout the study period. Moreover, M. tuberculosis–specific IL-17+ and IL-17+IFN-γ+ double-positive T cells were present in the airways but were largely absent in the periphery, suggesting that balanced mucosal Th1/Th17 responses are associated with LTBI. The majority of M. tuberculosis–specific CD4+ T cells that homed to the airways expressed the chemokine receptor CXCR3 and coexpressed CCR6. Notably, CXCR3+CD4+ cells were found in granulomatous and nongranulomatous regions of the lung and inversely correlated with M. tuberculosis burden. Our findings provide insights into antigen-specific T cell responses associated with asymptomatic M. tuberculosis infection that are relevant for developing better strategies to control TB.
Uma Shanmugasundaram, Allison N. Bucsan, Shashank R. Ganatra, Chris Ibegbu, Melanie Quezada, Robert V. Blair, Xavier Alvarez, Vijayakumar Velu, Deepak Kaushal, Jyothi Rengarajan
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 928 | 232 |
106 | 54 | |
Figure | 295 | 13 |
Supplemental data | 35 | 0 |
Citation downloads | 81 | 0 |
Totals | 1,445 | 299 |
Total Views | 1,744 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.