Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Streptococcus pyogenes genes that promote pharyngitis in primates
Luchang Zhu, Randall J. Olsen, Stephen B. Beres, Matthew Ojeda Saavedra, Samantha L. Kubiak, Concepcion C. Cantu, Leslie Jenkins, Andrew S. Waller, Zhizeng Sun, Timothy Palzkill, Adeline R. Porter, Frank R. DeLeo, James M. Musser
Luchang Zhu, Randall J. Olsen, Stephen B. Beres, Matthew Ojeda Saavedra, Samantha L. Kubiak, Concepcion C. Cantu, Leslie Jenkins, Andrew S. Waller, Zhizeng Sun, Timothy Palzkill, Adeline R. Porter, Frank R. DeLeo, James M. Musser
View: Text | PDF
Research Article Infectious disease

Streptococcus pyogenes genes that promote pharyngitis in primates

  • Text
  • PDF
Abstract

Streptococcus pyogenes (group A streptococcus; GAS) causes 600 million cases of pharyngitis annually worldwide. There is no licensed human GAS vaccine despite a century of research. Although the human oropharynx is the primary site of GAS infection, the pathogenic genes and molecular processes used to colonize, cause disease, and persist in the upper respiratory tract are poorly understood. Using dense transposon mutant libraries made with serotype M1 and M28 GAS strains and transposon-directed insertion sequencing, we performed genome-wide screens in the nonhuman primate (NHP) oropharynx. We identified many potentially novel GAS fitness genes, including a common set of 115 genes that contribute to fitness in both genetically distinct GAS strains during experimental NHP pharyngitis. Targeted deletion of 4 identified fitness genes/operons confirmed that our newly identified targets are critical for GAS virulence during experimental pharyngitis. Our screens discovered many surface-exposed or secreted proteins — substrates for vaccine research — that potentially contribute to GAS pharyngitis, including lipoprotein HitA. Pooled human immune globulin reacted with purified HitA, suggesting that humans produce antibodies against this lipoprotein. Our findings provide new information about GAS fitness in the upper respiratory tract that may assist in translational research, including developing novel vaccines.

Authors

Luchang Zhu, Randall J. Olsen, Stephen B. Beres, Matthew Ojeda Saavedra, Samantha L. Kubiak, Concepcion C. Cantu, Leslie Jenkins, Andrew S. Waller, Zhizeng Sun, Timothy Palzkill, Adeline R. Porter, Frank R. DeLeo, James M. Musser

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 621 148
PDF 109 31
Figure 252 1
Supplemental data 217 16
Citation downloads 106 0
Totals 1,305 196
Total Views 1,501

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts