Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection
Nyamekye Obeng-Adjei, … , Peter D. Crompton, Tuan M. Tran
Nyamekye Obeng-Adjei, … , Peter D. Crompton, Tuan M. Tran
Published May 19, 2020
Citation Information: JCI Insight. 2020;5(12):e137262. https://doi.org/10.1172/jci.insight.137262.
View: Text | PDF
Clinical Research and Public Health Immunology Infectious disease

Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection

  • Text
  • PDF
Abstract

BACKGROUND Malaria pathogenicity is determined, in part, by the adherence of Plasmodium falciparum–infected erythrocytes to the microvasculature mediated via specific interactions between P. falciparum erythrocyte membrane protein (PfEMP1) variant domains and host endothelial receptors. Naturally acquired antibodies against specific PfEMP1 variants can play an important role in clinical protection against malaria.METHODS We evaluated IgG responses against a repertoire of PfEMP1 CIDR domain variants to determine the rate and order of variant-specific antibody acquisition and their association with protection against febrile malaria in a prospective cohort study conducted in an area of intense, seasonal malaria transmission.RESULTS Using longitudinal data, we found that IgG antibodies against the pathogenic domain variants CIDRα1.7 and CIDRα1.8 were acquired the earliest. Furthermore, IgG antibodies against CIDRγ3 were associated with reduced prospective risk of febrile malaria and recurrent malaria episodes.CONCLUSION This study provides evidence that acquisition of IgG antibodies against PfEMP1 variants is ordered and demonstrates that antibodies against CIDRα1 domains are acquired the earliest in children residing in an area of intense, seasonal malaria transmission. Future studies will need to validate these findings in other transmission settings and determine the functional activity of these naturally acquired CIDR variant–specific antibodies.TRIAL REGISTRATION ClinicalTrials.gov NCT01322581.FUNDING Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.

Authors

Nyamekye Obeng-Adjei, Daniel B. Larremore, Louise Turner, Aissata Ongoiba, Shanping Li, Safiatou Doumbo, Takele B. Yazew, Kassoum Kayentao, Louis H. Miller, Boubacar Traore, Susan K. Pierce, Caroline O. Buckee, Thomas Lavstsen, Peter D. Crompton, Tuan M. Tran

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2020 Total
Citations: 4 9 4 3 4 1 25
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2024 (9)

Title and authors Publication Year
Profiling the Plasmodium falciparum Erythrocyte Membrane Protein 1-Specific Immununoglobulin G Response Among Ghanaian Children With Hemoglobin S and C.
Oleinikov AV, Seidu Z, Oleinikov IV, Tetteh M, Lamptey H, Ofori MF, Hviid L, Lopez-Perez M
The Journal of Infectious Diseases 2024
Broadly inhibitory antibodies against severe malaria virulence proteins.
Reyes RA, Raghavan SSR, Hurlburt NK, Introini V, Kana IH, Jensen RW, Martinez-Scholze E, Gestal-Mato M, Bau CB, Fernández-Quintero ML, Loeffler JR, Ferguson JA, Lee WH, Martin GM, Theander TG, Ssewanyana I, Feeney ME, Greenhouse B, Bol S, Ward AB, Bernabeu M, Pancera M, Turner L, Bunnik EM, Lavstsen T
bioRxiv : the preprint server for biology 2024
Natural malaria infection elicits rare but potent neutralizing antibodies to the blood-stage antigen RH5
Wang LT, Cooper AJ, Farrell B, Miura K, Diouf A, Müller-Sienerth N, Crosnier C, Purser L, Kirtley PJ, Maciuszek M, Barrett JR, McHugh K, Ogwang R, Tucker C, Li S, Doumbo S, Doumtabe D, Pyo CW, Skinner J, Nielsen CM, Silk SE, Kayentao K, Ongoiba A, Zhao M, Nguyen DC, Lee FE, Minassian AM, Geraghty DE, Traore B, Seder RA, Wilder BK, Crompton PD, Wright GJ, Long CA, Draper SJ, Higgins MK, Tan J
Cell 2024
A systems serology approach to identifying key antibody correlates of protection from cerebral malaria in Malawian children.
Walker IS, Dini S, Aitken EH, Damelang T, Hasang W, Alemu A, Jensen ATR, Rambhatla JS, Opi DH, Duffy MF, Takashima E, Harawa V, Tsuboi T, Simpson JA, Mandala W, Taylor TE, Seydel KB, Chung AW, Rogerson SJ
BMC medicine 2024
Infection length and host environment influence on Plasmodium falciparum dry season reservoir.
Andrade CM, Carrasquilla M, Dabbas U, Briggs J, van Dijk H, Sergeev N, Sissoko A, Niangaly M, Ntalla C, LaVerriere E, Skinner J, Golob K, Richter J, Cisse H, Li S, Hendry JA, Asghar M, Doumtabe D, Farnert A, Ruppert T, Neafsey DE, Kayentao K, Doumbo S, Ongoiba A, Crompton PD, Traore B, Greenhouse B, Portugal S
EMBO molecular medicine 2024
Human antibodies offer broad inhibition against variable proteins of the malaria parasite.
Tran TM
Nature 2024
Plasma From Older Children in Malawi Inhibits Plasmodium falciparum Binding in 3-Dimensional Brain Microvessels
Joof F, Hu R, Saidi A, Seydel KB, Cohee LM, Zheng Y, Smith JD
The Journal of Infectious Diseases 2024
PfEMP1 and var genes – still of key importance in Plasmodium falciparum malaria pathogenesis and immunity
Hviid L, Jensen AR, Deitsch KW
Advances in parasitology 2024
Broadly inhibitory antibodies to severe malaria virulence proteins.
Reyes RA, Raghavan SSR, Hurlburt NK, Introini V, Bol S, Kana IH, Jensen RW, Martinez-Scholze E, Gestal-Mato M, López-Gutiérrez B, Sanz S, Bancells C, Fernández-Quintero ML, Loeffler JR, Ferguson JA, Lee WH, Martin GM, Theander TG, Lusingu JPA, Minja DTR, Ssewanyana I, Feeney ME, Greenhouse B, Ward AB, Bernabeu M, Pancera M, Turner L, Bunnik EM, Lavstsen T
Nature 2024

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts