Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Selective LXR agonist DMHCA corrects retinal and bone marrow dysfunction in type 2 diabetes
Cristiano P. Vieira, Seth D. Fortmann, Masroor Hossain, Ana Leda Longhini, Sandra S. Hammer, Bright Asare-Bediako, David K. Crossman, Micheli S. Sielski, Yvonne Adu-Agyeiwaah, Mariana Dupont, Jason L. Floyd, Sergio Li Calzi, Todd Lydic, Robert S. Welner, Gary J. Blanchard, Julia V. Busik, Maria B. Grant
Cristiano P. Vieira, Seth D. Fortmann, Masroor Hossain, Ana Leda Longhini, Sandra S. Hammer, Bright Asare-Bediako, David K. Crossman, Micheli S. Sielski, Yvonne Adu-Agyeiwaah, Mariana Dupont, Jason L. Floyd, Sergio Li Calzi, Todd Lydic, Robert S. Welner, Gary J. Blanchard, Julia V. Busik, Maria B. Grant
View: Text | PDF
Research Article Ophthalmology Stem cells

Selective LXR agonist DMHCA corrects retinal and bone marrow dysfunction in type 2 diabetes

  • Text
  • PDF
Abstract

In diabetic dyslipidemia, cholesterol accumulates in the plasma membrane, decreasing fluidity and thereby suppressing the ability of cells to transduce ligand-activated signaling pathways. Liver X receptors (LXRs) make up the main cellular mechanism by which intracellular cholesterol is regulated and play important roles in inflammation and disease pathogenesis. N, N-dimethyl-3β-hydroxy-cholenamide (DMHCA), a selective LXR agonist, specifically activates the cholesterol efflux arm of the LXR pathway without stimulating triglyceride synthesis. In this study, we use a multisystem approach to understand the effects and molecular mechanisms of DMHCA treatment in type 2 diabetic (db/db) mice and human circulating angiogenic cells (CACs), which are hematopoietic progenitor cells with vascular reparative capacity. We found that DMHCA is sufficient to correct retinal and BM dysfunction in diabetes, thereby restoring retinal structure, function, and cholesterol homeostasis; rejuvenating membrane fluidity in CACs; hampering systemic inflammation; and correcting BM pathology. Using single-cell RNA sequencing on lineage–sca1+c-Kit+ (LSK) hematopoietic stem cells (HSCs) from untreated and DMHCA-treated diabetic mice, we provide potentially novel insights into hematopoiesis and reveal DMHCA’s mechanism of action in correcting diabetic HSCs by reducing myeloidosis and increasing CACs and erythrocyte progenitors. Taken together, these findings demonstrate the beneficial effects of DMHCA treatment on diabetes-induced retinal and BM pathology.

Authors

Cristiano P. Vieira, Seth D. Fortmann, Masroor Hossain, Ana Leda Longhini, Sandra S. Hammer, Bright Asare-Bediako, David K. Crossman, Micheli S. Sielski, Yvonne Adu-Agyeiwaah, Mariana Dupont, Jason L. Floyd, Sergio Li Calzi, Todd Lydic, Robert S. Welner, Gary J. Blanchard, Julia V. Busik, Maria B. Grant

×

Figure 9

DMHCA induces subpopulation gene expression changes and enhances AP1 signaling.

Options: View larger image (or click on image) Download as PowerPoint
DMHCA induces subpopulation gene expression changes and enhances AP1 sig...
(A) Compositional analysis showing density graphs of AP1-high stem cells in untreated and DMHCA-treated diabetic HSCs. (B) Heatmap of differentially expressed genes in AP1-high stem cells from untreated and DMHCA treated HSCs. (C) Significantly enriched secondary/intracellular signaling pathways in DMHCA-treated AP1-high stem cells from IPA pathway enrichment analysis. (D) Heatmap of differentially expressed genes in erythrocyte progenitors from untreated and DMHCA-treated HSCs. (E) Significantly enriched secondary/intracellular signaling pathways in DMHCA-treated erythrocyte progenitors from IPA pathway enrichment analysis. (F) Violin plots comparing expression of AP1 complex genes across samples and clusters. (G) Spatial representation of AP1 complex gene expression across samples.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts