Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation
Hannah G. Kelly, … , Stephen J. Kent, Adam K. Wheatley
Hannah G. Kelly, … , Stephen J. Kent, Adam K. Wheatley
Published May 21, 2020
Citation Information: JCI Insight. 2020;5(10):e136653. https://doi.org/10.1172/jci.insight.136653.
View: Text | PDF
Research Article Immunology Vaccines

Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation

  • Text
  • PDF
Abstract

Protein-based, self-assembling nanoparticles elicit superior immunity compared with soluble protein vaccines, but the immune mechanisms underpinning this effect remain poorly defined. Here, we investigated the immunogenicity of a prototypic ferritin-based nanoparticle displaying influenza hemagglutinin (HA) in mice and macaques. Vaccination of mice with HA-ferritin nanoparticles elicited higher serum antibody titers and greater protection against experimental influenza challenge compared with soluble HA protein. Germinal centers in the draining lymph nodes were expanded and persistent following HA-ferritin vaccination, with greater deposition of antigen that colocalized with follicular dendritic cells. Our findings suggest that a highly ordered and repetitive antigen array may directly drive germinal centers through a B cell–intrinsic mechanism that does not rely on ferritin-specific T follicular helper cells. In contrast to mice, enhanced immunogenicity of HA-ferritin was not observed in pigtail macaques, where antibody titers and lymph node immunity were comparable to soluble vaccination. An improved understanding of factors that drive nanoparticle vaccine immunogenicity in small and large animal models will facilitate the clinical development of nanoparticle vaccines for broad and durable protection against diverse pathogens.

Authors

Hannah G. Kelly, Hyon-Xhi Tan, Jennifer A. Juno, Robyn Esterbauer, Yi Ju, Wenbo Jiang, Verena C. Wimmer, Brigette C. Duckworth, Joanna R. Groom, Frank Caruso, Masaru Kanekiyo, Stephen J. Kent, Adam K. Wheatley

×

Full Text PDF | Download (14.03 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts