Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Multiomics dissection of molecular regulatory mechanisms underlying autoimmune-associated noncoding SNPs
Xiao-Feng Chen, Ming-Rui Guo, Yuan-Yuan Duan, Feng Jiang, Hao Wu, Shan-Shan Dong, Xiao-Rong Zhou, Hlaing Nwe Thynn, Cong-Cong Liu, Lin Zhang, Yan Guo, Tie-Lin Yang
Xiao-Feng Chen, Ming-Rui Guo, Yuan-Yuan Duan, Feng Jiang, Hao Wu, Shan-Shan Dong, Xiao-Rong Zhou, Hlaing Nwe Thynn, Cong-Cong Liu, Lin Zhang, Yan Guo, Tie-Lin Yang
View: Text | PDF
Research Article Genetics

Multiomics dissection of molecular regulatory mechanisms underlying autoimmune-associated noncoding SNPs

  • Text
  • PDF
Abstract

More than 90% of autoimmune-associated variants are located in noncoding regions, leading to challenges in deciphering the underlying causal roles of functional variants and genes and biological mechanisms. Therefore, to reduce the gap between traditional genetic findings and mechanistic understanding of disease etiologies and clinical drug development, it is important to translate systematically the regulatory mechanisms underlying noncoding variants. Here, we prioritized functional noncoding SNPs with regulatory gene targets associated with 19 autoimmune diseases by incorporating hundreds of immune cell–specific multiomics data. The prioritized SNPs are associated with transcription factor (TF) binding, histone modification, or chromatin accessibility, indicating their allele-specific regulatory roles. Their target genes are significantly enriched in immunologically related pathways and other known immunologically related functions. We found that 90.1% of target genes are regulated by distal SNPs involving several TFs (e.g., the DNA-binding protein CCCTC-binding factor [CTCF]), suggesting the importance of long-range chromatin interaction in autoimmune diseases. Moreover, we predicted potential drug targets for autoimmune diseases, including 2 genes (NFKB1 and SH2B3) with known drug indications on other diseases, highlighting their potential drug repurposing opportunities. Taken together, these findings may provide useful information for future experimental follow-up and drug applications on autoimmune diseases.

Authors

Xiao-Feng Chen, Ming-Rui Guo, Yuan-Yuan Duan, Feng Jiang, Hao Wu, Shan-Shan Dong, Xiao-Rong Zhou, Hlaing Nwe Thynn, Cong-Cong Liu, Lin Zhang, Yan Guo, Tie-Lin Yang

×

Figure 5

Prevailing long-range regulation linking functional SNPs to distal gene targets.

Options: View larger image (or click on image) Download as PowerPoint
Prevailing long-range regulation linking functional SNPs to distal gene ...
(A) Schematic showing different regulatory models underlying prioritized functional autoimmune SNPs and gene targets. Local gene was defined as those exclusively regulated by functional SNPs within target gene promoter region (1 kb surrounding TSS). (B) Pie chart showing comparison between local and distal regulatory pairs (left), as well as between 3 types of distal regulatory pairs (right) in A. Local pair was defined as gene regulated by prioritized functional SNPs within target gene promoter region (1 kb surrounding TSS). (C) Counts of SNP-gene pairs at different distance (kb). (D and E) Two examples showing multiple functional autoimmune SNPs regulating distal target gene with (D) or without (E) known immunological function via long-range chromatin interactions. Functional evidence supporting SNP-gene regulatory relationship, including both chromatin interactions, cis-QTL association, and colocalization between GWAS association and cis-eQTL association (selected colocalization results are shown in Supplemental Figure 7). Genomic annotation and chromatin interaction were visualized using WashU Epigenome Browser. More example genes are shown Supplemental Figures 8–12.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts