Infections due to carbapenem-resistant Klebsiella pneumoniae have emerged as a global threat due to its widespread antimicrobial resistance. Transplant recipients and patients with hematologic malignancies have high mortality rate, suggesting host factors in susceptibility. We developed a model of pulmonary infection using ST258 strain C4, KPC-2 clone, which are predominant K. pneumoniae carbapenemase–producing (KPC-producing) bacteria, and demonstrated that Rag2–/– Il2rg–/– mice — but not WT C57BL/6 or Rag2–/– mice — were susceptible to this opportunistic infection. Using single cell RNA sequencing in infected Rag2–/– mice, we identified distinct clusters of Ifng+ NK cells and Il17a+, Il22+, and inducible T cell costimulatory molecule–positive (ICOS+) group 3 innate lymphoid cells (ILCs) that were critical for host resistance. As solid organ transplantation is a risk factor, we generated a more clinically relevant model using FK506 in WT C57BL/6 mice. We further demonstrated that immunotherapy with recombinant IL-22 treatment ameliorated the ST258 pulmonary infection in both FK506-treated WT mice and Rag2–/– Il2rg–/– mice via hepatic IL-22ra1 signaling. These data support the development of host-directed immunotherapy as an adjunct treatment to new antibiotics.
Naoki Iwanaga, Ivy Sandquist, Alanna Wanek, Janet McCombs, Kejing Song, Jay K. Kolls
Depletion of NK cells with antibody reveals these cells are dispensable for host resistance to ST258 infection.