The severity of Duchenne muscular dystrophy (DMD), an incurable disease caused by the lack of dystrophin, might be modulated by different factors, including miRNAs. Among them, miR-378 is considered of high importance for muscle biology, but intriguingly, its role in DMD and its murine model (mdx mice) has not been thoroughly addressed so far. Here, we demonstrate that dystrophic mice additionally globally lacking miR-378 (double-KO [dKO] animals) exhibited better physical performance and improved absolute muscle force compared with mdx mice. Accordingly, markers of muscle damage in serum were significantly decreased in dKO mice, accompanied by diminished inflammation, fibrosis, and reduced abundance of regenerating fibers within muscles. The lack of miR-378 also normalized the aggravated fusion of dystrophin-deficient muscle satellite cells (mSCs). RNA sequencing of gastrocnemius muscle transcriptome revealed fibroblast growth factor 1 (Fgf1) as one of the most significantly downregulated genes in mice devoid of miR-378, indicating FGF1 as one of the mediators of changes driven by the lack of miR-378. In conclusion, we suggest that targeting miR-378 has the potential to ameliorate DMD pathology.
Paulina Podkalicka, Olga Mucha, Iwona Bronisz-Budzyńska, Magdalena Kozakowska, Katarzyna Pietraszek-Gremplewicz, Anna Cetnarowska, Urszula Głowniak-Kwitek, Karolina Bukowska-Strakova, Maciej Cieśla, Maria Kulecka, Jerzy Ostrowski, Michał Mikuła, Anna Potulska-Chromik, Anna Kostera-Pruszczyk, Alicja Józkowicz, Agnieszka Łoboda, Józef Dulak
Usage data is cumulative from December 2024 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 1,309 | 90 |
| 117 | 29 | |
| Figure | 492 | 0 |
| Supplemental data | 67 | 9 |
| Citation downloads | 67 | 0 |
| Totals | 2,052 | 128 |
| Total Views | 2,180 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.