The Wnt/β-catenin signaling pathway plays an important role in renal development and is reexpressed in the injured kidney and other organs. β-Catenin signaling is protective in acute kidney injury (AKI) through actions on the proximal tubule, but the current dogma is that Wnt/β-catenin signaling promotes fibrosis and development of chronic kidney disease (CKD). As the role of proximal tubular β-catenin signaling in CKD remains unclear, we genetically stabilized (i.e., activated) β-catenin specifically in murine proximal tubules. Mice with increased tubular β-catenin signaling were protected in 2 murine models of AKI to CKD progression. Oxidative stress, a common feature of CKD, reduced the conventional T cell factor/lymphoid enhancer factor–dependent β-catenin signaling and augmented FoxO3-dependent activity in proximal tubule cells in vitro and in vivo. The protective effect of proximal tubular β-catenin in renal injury required the presence of FoxO3 in vivo. Furthermore, we identified cystathionine γ-lyase as a potentially novel transcriptional target of β-catenin/FoxO3 interactions in the proximal tubule. Thus, our studies overturned the conventional dogma about β-catenin signaling and CKD by showing a protective effect of proximal tubule β-catenin in CKD and identified a potentially new transcriptional target of β-catenin/FoxO3 signaling that has therapeutic potential for CKD.
Stellor Nlandu-Khodo, Yosuke Osaki, Lauren Scarfe, Haichun Yang, Melanie Phillips-Mignemi, Jane Tonello, Kenyi Saito-Diaz, Surekha Neelisetty, Alla Ivanova, Tessa Huffstater, Robert McMahon, M. Mark Taketo, Mark deCaestecker, Balakuntalam Kasinath, Raymond C. Harris, Ethan Lee, Leslie S. Gewin
FoxO3 expression is increased in PTs with β-catenin stabilized and is required for the protective effect of β-catenin in PTs in AAN.