Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Reactive astrocyte-driven epileptogenesis is induced by microglia initially activated following status epilepticus
Fumikazu Sano, … , Masao Aihara, Schuichi Koizumi
Fumikazu Sano, … , Masao Aihara, Schuichi Koizumi
Published April 8, 2021
Citation Information: JCI Insight. 2021;6(9):e135391. https://doi.org/10.1172/jci.insight.135391.
View: Text | PDF
Research Article Neuroscience

Reactive astrocyte-driven epileptogenesis is induced by microglia initially activated following status epilepticus

  • Text
  • PDF
Abstract

Extensive activation of glial cells during a latent period has been well documented in various animal models of epilepsy. However, it remains unclear whether activated glial cells contribute to epileptogenesis, i.e., the chronically persistent process leading to epilepsy. Particularly, it is not clear whether interglial communication between different types of glial cells contributes to epileptogenesis, because past literature has mainly focused on one type of glial cell. Here, we show that temporally distinct activation profiles of microglia and astrocytes collaboratively contributed to epileptogenesis in a drug-induced status epilepticus model. We found that reactive microglia appeared first, followed by reactive astrocytes and increased susceptibility to seizures. Reactive astrocytes exhibited larger Ca2+ signals mediated by IP3R2, whereas deletion of this type of Ca2+ signaling reduced seizure susceptibility after status epilepticus. Immediate, but not late, pharmacological inhibition of microglial activation prevented subsequent reactive astrocytes, aberrant astrocyte Ca2+ signaling, and the enhanced seizure susceptibility. These findings indicate that the sequential activation of glial cells constituted a cause of epileptogenesis after status epilepticus. Thus, our findings suggest that the therapeutic target to prevent epilepsy after status epilepticus should be shifted from microglia (early phase) to astrocytes (late phase).

Authors

Fumikazu Sano, Eiji Shigetomi, Youichi Shinozaki, Haruka Tsuzukiyama, Kozo Saito, Katsuhiko Mikoshiba, Hiroshi Horiuchi, Dennis Lawrence Cheung, Junichi Nabekura, Kanji Sugita, Masao Aihara, Schuichi Koizumi

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,561 476
PDF 206 114
Figure 388 4
Supplemental data 295 16
Citation downloads 102 0
Totals 2,552 610
Total Views 3,162
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts