Efficient adeno-associated virus–mediated (AAV-mediated) gene delivery remains a significant obstacle to effective retinal gene therapies. Here, we apply directed evolution — guided by deep sequencing and followed by direct in vivo secondary selection of high-performing vectors with a GFP-barcoded library — to create AAV viral capsids with the capability to deliver genes to the outer retina in primates. A replication-incompetent library, produced via providing rep in trans, was created to mitigate risk of AAV propagation. Six rounds of in vivo selection with this library in primates — involving intravitreal library administration, recovery of genomes from outer retina, and extensive next-generation sequencing of each round — resulted in vectors with redirected tropism to the outer retina and increased gene delivery efficiency to retinal cells. These viral vectors expand the toolbox of vectors available for primate retina, and they may enable less invasive delivery of therapeutic genes to patients, potentially offering retina-wide infection at a similar dosage to vectors currently in clinical use.
Leah C. Byrne, Timothy P. Day, Meike Visel, Jennifer A. Strazzeri, Cécile Fortuny, Deniz Dalkara, William H. Merigan, David V. Schaffer, John G. Flannery
This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.
PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.
Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.