Supplementary Materials

Supplementary Figure 1. Transverse cryosectioning of mouse retinal punch illustrates the method used to isolate the outer retina. A punch of retina was flatmounted, embedded in OCT cutting medium, and flash frozen, then mounted in a cryostat and sectioned at $20 \mu \mathrm{~m}$ sections through retinal layers. Layers were then stained for PKC-alpha (a marker of bipolar cells in the inner nuclear layer) and cone arrestin (a marker of photoreceptors in the outer retina). Labeling shows successful isolation of outer retinal tissue from inner retinal cells, which was then used for amplification of libraries. RPE was peeled away prior to sectioning.

Supplementary Figure 2. Scatter plots track variants across rounds of selection. Scatterplots illustrate the behavior of individual variants over all rounds of selection for the \sim Ancestral- 7 mer library and the 588-Loopswap library. Variants overrepresented in the original library are colored blue. Variants that had the greatest fold increase in representation in the final round of selection are shown in magenta. Variants that were overrepresented in the original library and increased significantly in representation over rounds of selection are colored orange. Black dots in AAV2-7mer scatter plots indicate the variant NHP\#9.

Round	NHP ID	Age/Weight/Sex	Libraries injected	Amount Virus Injected	Notes
1	V002278	Approx. 7 years (age unknown at import) 5.98 kg / Male	Loop Swap Ancestral-7mer	$2 \times 10^{11} \mathrm{vg}$ per library; $100 \mu 1$ volume.	
2a	V002262	Approx. 7 years (age unknown at import) 6.35 kg / Male	Recovered variants from round 1 AAV2-7mer	$\begin{gathered} 2.5 \times 10^{11} \mathrm{vg} \text { ONL } \\ 2.5 \times 10^{11} \mathrm{vg} \text { RPE } \\ 5 \times 10^{10} \mathrm{vg} \text { AAV2-7mer; } 100 \\ \mu \mathrm{l} \text { volume. } \end{gathered}$	No variants were PCR amplified following injection from this round, no obvious immune response noted.
2b	V002148	Approx. 7 years (age unknown at import) $6.48 \mathrm{~kg} /$ Male	Recovered variants from round 1 AAV2-7mer	$\begin{gathered} 1.3 \times 10^{11} \mathrm{vg} \text { ONL } \\ 1.3 \times 10^{11} \mathrm{vg} \text { RPE } \\ 5 \times 10^{10} \mathrm{vg} \text { AAV2- } 7 \mathrm{mer} ; 100 \\ \mu \mathrm{l} \text { volume. } \end{gathered}$	Repeat of previous round
3	V002265	8 years 5 months $4.92 \mathrm{~kg} /$ Male	Recovered variants from round 3	$\begin{gathered} 4.3 \times 10^{12} \mathrm{vg} \text { ONL } \\ 3.7 \times 10^{12} \mathrm{vg} \text { RPE; } 100 \mu \mathrm{l} \\ \text { volume. } \end{gathered}$	Error prone PCR conducted No adverse events
4	V002540	6 years 9 months $4.59 \mathrm{~kg} /$ Male	Recovered variants from round 4	$\sim 1 \times 10^{12}$ vg per library; 100 μ volume.	No adverse events
5	V002861	6 years 6 months $6.60 \mathrm{~kg} /$ Male	Recovered variants from round 5	$\begin{gathered} 2.4 \times 10^{12} \mathrm{vg} \text { ONL } \\ 6.3 \times 10^{12} \mathrm{vg} \text { RPE; } 100 \mu 1 \\ \text { volume. } \end{gathered}$	No adverse events
$\begin{aligned} & \text { GFP- } \\ & \text { barcode } \end{aligned}$	V002361	9 years 5 months $6.00 \mathrm{~kg} /$ Male	Barcoded individual variants	$\sim 1 \times 10^{10} \mathrm{vg}$ each variant; 100 $\mu \mathrm{l}$ volume.	Both eyes injected with GFP-BC library. Hyphema in left eye resolved in 12 days
Variant validation	106	9 years 5 months $14.5 \mathrm{~kg} /$ Male	7 m 8 and NHP9	$\begin{gathered} \sim 1.5 \times 10^{12} \mathrm{vg} \\ 7 \mathrm{~m} 8-\mathrm{pR} 1.7-\mathrm{GFP}+ \\ 1.5 \times 10^{12} \mathrm{vg} \\ 7 \mathrm{~m} 8-\mathrm{SNCG}-\mathrm{tdTomato} ; 100 \\ \mu \mathrm{l} \text { volume. } \\ \mathrm{OR} \\ \sim 1.5 \times 10^{12} \mathrm{vg} \\ \text { NHP\#9-pR1.7-GFP }+ \\ 1.5 \times 10^{12} \mathrm{vg} \\ \text { NHP\#9-SNCG-tdTomato; } \\ 100 \mu 1 \text { volume. } \end{gathered}$	No adverse events
Variant validation	735	17 years Male	NHP26 in one eye	$\begin{gathered} \sim 5 \times 10^{10} \mathrm{vg} \\ \text { NHP\#26-scCAG-GFP; } 100 \\ \mu \text { l volume. } \end{gathered}$	No adverse events

Supplemental Table 1. Summary of the rounds of selection performed in primates. The table indicates the age and weight of the primates injected, the virus and titer injected at each round, and notes on the rounds of selection completed. ONL refers to virus libraries recovered from ONL samples. RPE refers to virus libraries recovered from RPE samples, which were processed in parallel. Round 2 b was a repeat of the $2^{\text {nd }}$ round of selection, which did not result in PCR amplification of variants.

Primer	Sequence
SDM1	GACCTTAATCACAATCTTTTAAAACCCCGGCATGGCGGCT
SDM2	GGCTCGTGGACAAGTAAAGGGATTACCTCGGA
Neb Genomic_F	GTAAGGGTCTGCTCCATTGCCACTT
Neb Genomic_R	CTAAATCAAAAAAGAGTGAAAAGTTAGGAGG
IFA_F	TGGCTCGTGGACAAGGTAAGGGTCTGCTCCATTGC
IFA_R	CTCCGAGGTAATCCCCTAAATCAAAAAAGAGTGAAAAGTT
HindIII_F1	GACGTCAGACGCGGAAGCTTC
NotI_R1	GGTTTATTGATTAACAAGCGGCCG
Ascl_R1	TGGCGGACTTTATAGGCGCG
Spel_R1	GCCCAGTTCGAATAGCGAGT
LS588_Forward adapter	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGTTCTGTATCTACCAACCTCCA
LS588_rev_index1	CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGACCATGCCTGGAAGAACGCC
LS453 Forward adapter	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNATCGACCAGTACCTGTATTACT
LS453_rev_index1	CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGGTCCCGAATGTCACTCGCTC
Anc_Forward adapter	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNCCTGCAGTCGTCTAACACCGC
Anc rev index 1	CAAGCAGAAGACGGCATACGAGATCTCTACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTAAGGCTCCCTGGCTGTTGAC
5_Forward adapter	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNATGGCCACCAACAACCAGAGC
5_rev_index1	CAAGCAGAAGACGGCATACGAGATATCAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGAGGTTGTACGTGCCGGTCGC
4 Forward adapter	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNACCTACCTGGCGGTGACCAGA
4_rev_index1	CAAGCAGAAGACGGCATACGAGATTAGTTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTCCACGGTCGGCAGGTTGCTG
LS588_rev_index2	CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGACCATGCCTGGAAGAACGCC
LS588 rev index3	CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGACCATGCCTGGAAGAACGCC
LS588_rev_index4	CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGACCATGCCTGGAAGAACGCC
LS588 rev index5	CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGACCATGCCTGGAAGAACGCC
LS588_rev_index6	CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGACCATGCCTGGAAGAACGCC
LS588_rev_index 7	CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGACCATGCCTGGAAGAACGCC
LS588 rev index8	CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGACCATGCCTGGAAGAACGCC
LS453_rev_index2	CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGGTCCCGAATGTCACTCGCTC
LS453_rev_index3	CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGGTCCCGAATGTCACTCGCTC
LS453 rev index4	CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGGTCCCGAATGTCACTCGCTC
LS453_rev_index5	CAAGCAGAAGACGGCATACGAGATTTGACTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGGTCCCGAATGTCACTCGCTC
LS453_rev_index6	CAAGCAGAAGACGGCATACGAGATGGAACTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGGTCCCGAATGTCACTCGCTC
LS453 rev index 7	CAAGCAGAAGACGGCATACGAGATTGACATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGGTCCCGAATGTCACTCGCTC
LS453_rev_index8	CAAGCAGAAGACGGCATACGAGATGGACGGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGGTCCCGAATGTCACTCGCTC
Anc_rev_index 2	CAAGCAGAAGACGGCATACGAGATGCGGACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTAAGGCTCCCTGGCTGTTGAC
Anc rev index 3	CAAGCAGAAGACGGCATACGAGATTTTCACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTAAGGCTCCCTGGCTGTTGAC
Anc_rev_index 4	CAAGCAGAAGACGGCATACGAGATGGCCACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTAAGGCTCCCTGGCTGTTGAC
Anc_rev_index 5	CAAGCAGAAGACGGCATACGAGATCGAAACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTAAGGCTCCCTGGCTGTTGAC
Anc_rev index6	CAAGCAGAAGACGGCATACGAGATCGTACGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTAAGGCTCCCTGGCTGTTGAC
Anc_rev_index 7	CAAGCAGAAGACGGCATACGAGATCCACTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTAAGGCTCCCTGGCTGTTGAC
Anc_rev_index8	CAAGCAGAAGACGGCATACGAGATGCTACCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTAAGGCTCCCTGGCTGTTGAC
5 rev index2	CAAGCAGAAGACGGCATACGAGATGCTCATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGAGGTTGTACGTGCCGGTCGC
5_rev_index 3	CAAGCAGAAGACGGCATACGAGATAGGAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGAGGTTGTACGTGCCGGTCGC
5_rev_index 4	CAAGCAGAAGACGGCATACGAGATCTTTTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGAGGTTGTACGTGCCGGTCGC
4 rev index 2	CAAGCAGAAGACGGCATACGAGATCCGGTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTCCACGGTCGGCAGGTTGCTG
4_rev_index 3	CAAGCAGAAGACGGCATACGAGATATCGTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNTCCACGGTCGGCAGGTTGCTG
4 rev index 4	CAAGCAGAAGACGGCATACGAGATTGAGTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNTCCACGGTCGGCAGGTTGCTG
2-7mer Forward adapter	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNTCTACCAACCTCCAGAGAGG
rev_index1	CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
rev index2	CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
rev_index3	CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
rev_index4	CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
rev index5	CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
rev_index6	CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
rev_index 7	CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
rev index8	CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
rev_index9	CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
rev_index 10	CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
rev index11	CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
rev_index 12	CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNGTTGACATCTGCGGTAGCTG
F_adapter_GFPBC	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGGCCATCAAGCTTATCGATACC
R adapter GFPBC	CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNCTGATCAGCGAGCTCTAGTCG
NHP GAPD F	TGCACCACCAACTGCTTAGC
NHP GAPD R	GGCATGGACTGTGGTCATGAG
K9 GAPDH F	TGTCCCCACCCCCAATGTATC
K9 GAPDH R	CTCCGATGCCTGCTTCACTACCTT

Supplemental Table 2. Primers used in the study.

