An intact lung epithelial barrier is essential for lung homeostasis. The Na+, K+-ATPase (NKA), primarily serving as an ion transporter, also regulates epithelial barrier function via modulation of tight junctions. However, the underlying mechanism is not well understood. Here, we show that overexpression of the NKA β1 subunit upregulates the expression of tight junction proteins, leading to increased alveolar epithelial barrier function by an ion transport–independent mechanism. Using IP and mass spectrometry, we identified a number of unknown protein interactions of the β1 subunit, including a top candidate, myotonic dystrophy kinase–related cdc42-binding kinase α (MRCKα), which is a protein kinase known to regulate peripheral actin formation. Using a doxycycline-inducible gene expression system, we demonstrated that MRCKα and its downstream activation of myosin light chain is required for the regulation of alveolar barrier function by the NKA β1 subunit. Importantly, MRCKα is expressed in both human airways and alveoli and has reduced expression in patients with acute respiratory distress syndrome (ARDS), a lung illness that can be caused by multiple direct and indirect insults, including the infection of influenza virus and SARS-CoV-2. Our results have elucidated a potentially novel mechanism by which NKA regulates epithelial tight junctions and have identified potential drug targets for treating ARDS and other pulmonary diseases that are caused by barrier dysfunction.
Haiqing Bai, Rui Zhou, Michael Barravecchia, Rosemary Norman, Alan Friedman, Deborah Yu, Xin Lin, Jennifer L. Young, David A. Dean
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 437 | 178 |
76 | 59 | |
Figure | 120 | 2 |
Table | 47 | 0 |
Supplemental data | 25 | 2 |
Citation downloads | 46 | 0 |
Totals | 751 | 241 |
Total Views | 992 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.