Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Inhibition of astrocyte hemichannel improves recovery from spinal cord injury
Chao Zhang, … , Naomi L. Sayre, Jean X. Jiang
Chao Zhang, … , Naomi L. Sayre, Jean X. Jiang
Published March 8, 2021
Citation Information: JCI Insight. 2021;6(5):e134611. https://doi.org/10.1172/jci.insight.134611.
View: Text | PDF
Research Article Therapeutics

Inhibition of astrocyte hemichannel improves recovery from spinal cord injury

  • Text
  • PDF
Abstract

Spinal cord injury (SCI) causes severe disability, and the current inability to restore function to the damaged spinal cord leads to lasting detrimental consequences to patients. One strategy to reduce SCI morbidity involves limiting the spread of secondary damage after injury. Previous studies have shown that connexin 43 (Cx43), a gap junction protein richly expressed in spinal cord astrocytes, is a potential mediator of secondary damage. Here, we developed a specific inhibitory antibody, mouse-human chimeric MHC1 antibody (MHC1), that inhibited Cx43 hemichannels, but not gap junctions, and reduced secondary damage in 2 incomplete SCI mouse models. MHC1 inhibited the activation of Cx43 hemichannels in both primary spinal astrocytes and astrocytes in situ. In both SCI mouse models, administration of MHC1 after SCI significantly improved hind limb locomotion function. Remarkably, a single administration of MHC1 30 minutes after injury improved the recovery up to 8 weeks post-SCI. Moreover, MHC1 treatment decreased gliosis and lesion sizes, increased white and gray matter sparing, and improved neuronal survival. Together, these results suggest that inhibition of Cx43 hemichannel function after traumatic SCI reduces secondary damage, limits perilesional gliosis, and improves functional recovery. By targeting hemichannels specifically with an antibody, this study provides a potentially new, innovative therapeutic approach in treating SCI.

Authors

Chao Zhang, Zhao Yan, Asif Maknojia, Manuel A. Riquelme, Sumin Gu, Grant Booher, David J. Wallace, Viktor Bartanusz, Akshay Goswami, Wei Xiong, Ningyan Zhang, Michael J. Mader, Zhiqiang An, Naomi L. Sayre, Jean X. Jiang

×

Figure 3

MHC1 delivered to spinal cord inhibits opening of hemichannels after acute SCI.

Options: View larger image (or click on image) Download as PowerPoint
MHC1 delivered to spinal cord inhibits opening of hemichannels after acu...
(A) MHC1 antibody (25 mg/kg) was i.p. injected 30 minutes after SCI under model 2. Four hours after the injection, spinal cords were isolated and fixed, and frozen tissue sections were prepared and immunolabeled with FITC-conjugated anti-human IgG secondary antibody. Images were taken from injury site. Scale bar: 100 μm. (B) MHC1 antibody (25 mg/kg) was i.p. injected 30 minutes after SCI under model 1. Evans blue (EB) and FITC-dextran dye were coinjected through tail vein 4 hours after i.p. injection. Mice were euthanized and perfused before isolation of spinal cords. Frozen tissue sections were prepared and EB dye uptake (red) was detected by fluorescence microscopy. Images were taken from the perilesional area (area < 1.5 mm from injury border). Scale bar: 50 μm. The percentage (C) and signal intensity (D) of EB-positive cells were quantified by NIH ImageJ software, and the results were combined from injury site, perilesional area, and distal area. The results are presented as mean ± SEM. SCI+Saline (n = 4), SCI+MHC1 (n = 4). Unpaired t test (1 tailed) was used in statistical analysis (C and D). **P < 0.01.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts