Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Echinatin effectively protects against NLRP3 inflammasome–driven diseases by targeting HSP90
Guang Xu, Shubin Fu, Xiaoyan Zhan, Zhilei Wang, Ping Zhang, Wei Shi, Nan Qin, Yuanyuan Chen, Chunyu Wang, Ming Niu, Yuming Guo, Jiabo Wang, Zhaofang Bai, Xiaohe Xiao
Guang Xu, Shubin Fu, Xiaoyan Zhan, Zhilei Wang, Ping Zhang, Wei Shi, Nan Qin, Yuanyuan Chen, Chunyu Wang, Ming Niu, Yuming Guo, Jiabo Wang, Zhaofang Bai, Xiaohe Xiao
View: Text | PDF
Research Article Immunology Inflammation

Echinatin effectively protects against NLRP3 inflammasome–driven diseases by targeting HSP90

  • Text
  • PDF
Abstract

Aberrant activation of NLRP3 inflammasome has been implicated in a variety of human inflammatory diseases, but currently, no pharmacological NLRP3 inhibitor has been approved. In this study, we showed that echinatin, the ingredient of the traditional herbal medicine licorice, effectively suppresses the activation of NLRP3 inflammasome in vitro and in vivo. Further investigation revealed that echinatin exerts its inhibitory effect on NLRP3 inflammasome by binding to heat-shock protein 90 (HSP90), inhibiting its ATPase activity and disrupting the association between the cochaperone SGT1 and HSP90-NLRP3. Importantly, in vivo experiments demonstrated that administration of echinatin obviously inhibits NLRP3 inflammasome activation and ameliorates LPS-induced septic shock and dextran sodium sulfate–induced (DSS-induced) colitis in mice. Moreover, echinatin exerted favorable pharmacological effects on liver inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis (NASH). Collectively, our study identifies echinatin as a potentially novel inhibitor of NLRP3 inflammasome, and its use may be developed as a therapeutic approach for the treatment of NLRP3-driven diseases.

Authors

Guang Xu, Shubin Fu, Xiaoyan Zhan, Zhilei Wang, Ping Zhang, Wei Shi, Nan Qin, Yuanyuan Chen, Chunyu Wang, Ming Niu, Yuming Guo, Jiabo Wang, Zhaofang Bai, Xiaohe Xiao

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,368 443
PDF 142 126
Figure 375 4
Supplemental data 53 8
Citation downloads 122 0
Totals 2,060 581
Total Views 2,641
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts