Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Immune cell repertoires in breast cancer patients after adjuvant chemotherapy
Claire E. Gustafson, Rohit Jadhav, Wenqiang Cao, Qian Qi, Mark Pegram, Lu Tian, Cornelia M. Weyand, Jorg J. Goronzy
Claire E. Gustafson, Rohit Jadhav, Wenqiang Cao, Qian Qi, Mark Pegram, Lu Tian, Cornelia M. Weyand, Jorg J. Goronzy
View: Text | PDF
Research Article Cell biology

Immune cell repertoires in breast cancer patients after adjuvant chemotherapy

  • Text
  • PDF
Abstract

Adjuvant chemotherapy in breast cancer patients causes immune cell depletion at an age when the regenerative capacity is compromised. Successful regeneration requires the recovery of both quantity and quality of immune cell subsets. Although immune cell numbers rebound within a year after treatment, it is unclear whether overall compositional diversity is recovered. We investigated the regeneration of immune cell complexity by comparing peripheral blood mononuclear cells from breast cancer patients ranging from 1–5 years after chemotherapy with those of age-matched healthy controls using mass cytometry and T cell receptor sequencing. These data reveal universal changes in patients’ CD4+ T cells that persisted for years and consisted of expansion of Th17-like CD4 memory populations with incomplete recovery of CD4+ naive T cells. Conversely, CD8+ T cells fully recovered within a year. Mechanisms of T cell regeneration, however, were unbiased, as CD4+ and CD8+ T cell receptor diversity remained high. Likewise, terminal differentiated effector memory cells were not expanded, indicating that regeneration was not driven by recognition of latent viruses. These data suggest that, while CD8+ T cell immunity is successfully regenerated, the CD4 compartment may be irreversibly affected. Moreover, the bias of CD4 memory toward inflammatory effector cells may impact responses to vaccination and infection.

Authors

Claire E. Gustafson, Rohit Jadhav, Wenqiang Cao, Qian Qi, Mark Pegram, Lu Tian, Cornelia M. Weyand, Jorg J. Goronzy

×

Figure 7

Persistent alterations in the CD4+ T cell compartment of patients after chemotherapy.

Options: View larger image (or click on image) Download as PowerPoint
Persistent alterations in the CD4+ T cell compartment of patients after ...
(A) Representative scaffold analysis and the percent of differential clusters in B cells between patients < 3 (early) and 3–5 years (late) after chemotherapy compared with healthy controls. (B) Frequencies of B cell subsets in controls, early patients, and late patients determined by hand-gating. (C) Representative scaffold analysis and the percent of differential clusters in CD4+ T cell compartment cells between patients < 3 (early) and 3–5 years (late) after chemotherapy compared with healthy controls. Cluster size is proportional to cell frequencies in the individual patient. (D) Frequencies of CD4+ T cell subsets in controls, early patients, and late patients determined by hand-gating. P values were determined by 1-way ANOVA with Tukey’s multiple comparison test. Data are shown as mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts