Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis
Julia K. Panzer, Helmut Hiller, Christian M. Cohrs, Joana Almaça, Stephen J. Enos, Maria Beery, Sirlene Cechin, Denise M. Drotar, John R. Weitz, Jorge Santini, Mollie K. Huber, Mirza Muhammad Fahd Qadir, Ricardo L. Pastori, Juan Domínguez-Bendala, Edward A. Phelps, Mark A. Atkinson, Alberto Pugliese, Alejandro Caicedo, Irina Kusmartseva, Stephan Speier
Julia K. Panzer, Helmut Hiller, Christian M. Cohrs, Joana Almaça, Stephen J. Enos, Maria Beery, Sirlene Cechin, Denise M. Drotar, John R. Weitz, Jorge Santini, Mollie K. Huber, Mirza Muhammad Fahd Qadir, Ricardo L. Pastori, Juan Domínguez-Bendala, Edward A. Phelps, Mark A. Atkinson, Alberto Pugliese, Alejandro Caicedo, Irina Kusmartseva, Stephan Speier
View: Text | PDF
Resource and Technical Advance Endocrinology

Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis

  • Text
  • PDF
Abstract

In type 1 diabetes (T1D), autoimmune destruction of pancreatic β cells leads to insulin deficiency and loss of glycemic control. However, knowledge about human pancreas pathophysiology in T1D remains incomplete. To address this limitation, we established a pancreas tissue slice platform of donor organs with and without diabetes, facilitating the first live cell studies of human pancreas in T1D pathogenesis to our knowledge. We show that pancreas tissue slices from organ donors allow thorough assessment of processes critical for disease development, including insulin secretion, β cell physiology, endocrine cell morphology, and immune infiltration within the same donor organ. Using this approach, we compared detailed pathophysiological profiles for 4 pancreata from donors with T1D with 19 nondiabetic control donors. We demonstrate that β cell loss, β cell dysfunction, alterations of β cell physiology, and islet infiltration contributed differently to individual cases of T1D, allowing insight into pathophysiology and heterogeneity of T1D pathogenesis. Thus, our study demonstrates that organ donor pancreas tissue slices represent a promising and potentially novel approach in the search for successful prevention and reversal strategies of T1D.

Authors

Julia K. Panzer, Helmut Hiller, Christian M. Cohrs, Joana Almaça, Stephen J. Enos, Maria Beery, Sirlene Cechin, Denise M. Drotar, John R. Weitz, Jorge Santini, Mollie K. Huber, Mirza Muhammad Fahd Qadir, Ricardo L. Pastori, Juan Domínguez-Bendala, Edward A. Phelps, Mark A. Atkinson, Alberto Pugliese, Alejandro Caicedo, Irina Kusmartseva, Stephan Speier

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 831 260
PDF 122 48
Figure 322 0
Table 43 0
Supplemental data 50 0
Citation downloads 79 0
Totals 1,447 308
Total Views 1,755
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts