Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Gut permeability, inflammation, and bone density across the menopause transition
Albert Shieh, Marta Epeldegui, Arun S. Karlamangla, Gail A. Greendale
Albert Shieh, Marta Epeldegui, Arun S. Karlamangla, Gail A. Greendale
View: Text | PDF
Clinical Research and Public Health Bone biology Endocrinology

Gut permeability, inflammation, and bone density across the menopause transition

  • Text
  • PDF
Abstract

BACKGROUND Inflammation is implicated in many aging-related disorders. In animal models, menopause leads to increased gut permeability and inflammation. Our primary objective was to determine if gut permeability increases during the menopause transition (MT) in women. Our exploratory objectives were to examine whether greater gut permeability is associated with more inflammation and lower bone mineral density (BMD).METHODS We included 65 women from the Study of Women’s Health Across the Nation (SWAN). Key measures were markers of gut permeability (gut barrier dysfunction, fatty acid binding protein 2 [FABP2]) and immune activation secondary to gut microbial translocation (LPS binding protein [LBP], soluble CD14 [sCD14]), inflammation (high-sensitivity CRP), and lumbar spine (LS) or total hip (TH) BMD.RESULTS In our primary analysis, FABP2, LBP, and sCD14 increased by 22.8% (P = 0.001), 3.7% (P = 0.05), and 8.9% (P = 0.0002), respectively, from pre- to postmenopause. In exploratory, repeated measures, mixed-effects linear regression (adjusted for BMI, age at the premenopausal visit, race/ethnicity, and study site), greater gut permeability was associated with greater inflammation, along with lower LS and TH BMD.CONCLUSION Gut permeability increases during the MT. Greater gut permeability is associated with more inflammation and lower BMD. Future studies should examine the longitudinal associations of gut permeability, inflammation, and BMD.FUNDING Funding for this research was provided by NIH, Department of Health and Human Services, through the National Institute on Aging, National Institute of Nursing Research, and NIH Office of Research on Women’s Health (U01NR004061, U01AG012505, U01AG012535, U01AG012531, U01AG012539, U01AG012546, U01AG012553, U01AG012554, and U01AG012495).

Authors

Albert Shieh, Marta Epeldegui, Arun S. Karlamangla, Gail A. Greendale

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,109 834
PDF 125 135
Figure 270 1
Table 171 0
Supplemental data 54 0
Citation downloads 156 0
Totals 1,885 970
Total Views 2,855
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts