Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Heme oxygenase-1 orchestrates the immunosuppressive program of tumor-associated macrophages
Emmanuelle Alaluf, … , Alain Le Moine, Stanislas Goriely
Emmanuelle Alaluf, … , Alain Le Moine, Stanislas Goriely
Published May 5, 2020
Citation Information: JCI Insight. 2020;5(11):e133929. https://doi.org/10.1172/jci.insight.133929.
View: Text | PDF
Research Article Immunology Oncology

Heme oxygenase-1 orchestrates the immunosuppressive program of tumor-associated macrophages

  • Text
  • PDF
Abstract

Tumor-associated macrophages (TAMs) contribute to the maintenance of a strong immunosuppressive environment, supporting tumor progression and resistance to treatment. To date, the mechanisms that drive acquisition of these immunosuppressive features are still poorly defined. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme that catabolizes free heme. It displays important cytoprotective, antiinflammatory, and antioxidant properties. A growing body of evidence suggests that HO-1 may also promote tumor development. Herein, we show that HO-1 is highly expressed in monocytic cells in the tumor microenvironment (TME) once they differentiate into TAMs. Deletion of HO-1 in the myeloid compartment enhances the beneficial effects of a therapeutic antitumor vaccine by restoring CD8+ T cell proliferation and cytotoxicity. We further show that induction of HO-1 plays a major role in monocyte education by tumor cells by modulating their transcriptional and epigenetic programs. These results identify HO-1 as a valuable therapeutic target to reprogram the TME and synergize with current cancer therapies to facilitate antitumor response.

Authors

Emmanuelle Alaluf, Benoît Vokaer, Aurélie Detavernier, Abdulkader Azouz, Marion Splittgerber, Alice Carrette, Louis Boon, Frédérick Libert, Miguel Soares, Alain Le Moine, Stanislas Goriely

×

Full Text PDF | Download (5.88 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts