Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Targeting IL-17A/glucocorticoid synergy to CSF3 expression in neutrophilic airway diseases
Suidong Ouyang, Caini Liu, Jianxin Xiao, Xing Chen, Andy C. Lui, Xiaoxia Li
Suidong Ouyang, Caini Liu, Jianxin Xiao, Xing Chen, Andy C. Lui, Xiaoxia Li
View: Text | PDF
Research Article Immunology Inflammation

Targeting IL-17A/glucocorticoid synergy to CSF3 expression in neutrophilic airway diseases

  • Text
  • PDF
Abstract

IL-17A plays a critical role in the pathogenesis of steroid-resistant neutrophilic airway inflammation, which is a hallmark of severe asthma and chronic obstructive pulmonary disease (COPD). Through RNA sequencing analysis of transcriptomes of human airway smooth muscle cells treated with IL-17A, dexamethasone (DEX, a synthetic glucocorticoid drug), alone or in combination, we identified a group of genes that are synergistically induced by IL-17A and DEX, including the neutrophil-promoting cytokine CSF3. In type-17 (Th17/IL-17Ahi) preclinical models of neutrophilic severe asthma (acute and chronic) and COPD, although DEX treatment was able to reduce the expression of neutrophil-mobilizing CXCL1 and CXCL2 in lung tissue, CSF3 expression was upregulated by DEX treatment. We found that DEX treatment alone failed to alleviate neutrophilic airway inflammation and pathology, and even exacerbated the disease phenotype when CSF3 was highly induced. Disruption of the IL-17A/DEX synergy by IL-17A inhibition with anti–IL-17A mAb or cyanidin-3-glucoside (C3G, a small-molecule IL-17A blocker) or depletion of CSF3 effectively rendered DEX sensitivity in type-17 preclinical models of neutrophilic airway diseases. Our study elucidates what we believe is a novel mechanism of steroid resistance in type-17 neutrophilic airway inflammation and offers an effective steroid-sparing therapeutic strategy (combined low-dose DEX and C3G) for treating neutrophilic airway diseases.

Authors

Suidong Ouyang, Caini Liu, Jianxin Xiao, Xing Chen, Andy C. Lui, Xiaoxia Li

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 970 248
PDF 100 71
Figure 386 6
Table 71 0
Supplemental data 46 31
Citation downloads 94 0
Totals 1,667 356
Total Views 2,023
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts