The lack of sufficient functional tumor-infiltrating lymphocytes in the tumor microenvironment (TME) is one of the primary indications for the poor prognosis of patients with cancer. In this study, we developed an Erbitux-based IL-21 tumor-targeting fusion protein (Erb-IL21) to prolong the half-life and improve the antitumor efficacy of IL-21. Compared with Erb-IL2, Erb-IL21 demonstrated much lower toxicity in vivo. Mechanistically, Erb-IL21 selectively expanded functional cytotoxic T lymphocytes but not dysfunctional CD8+ T cells in the TME. We observed that the IL-21–mediated antitumor effect largely depended on the existing intratumoral CD8+ T cells, instead of newly migrated CD8+ T cells. Furthermore, Erb-IL21 overcame checkpoint blockade resistance in mice with advanced tumors. Our study reveals that Erb-IL21 can target IL-21 to tumors and maximize the antitumor potential of checkpoint blockade by expending a subset of tumor antigen–specific CD8+ T cells to achieve effective tumor control.
Sisi Deng, Zhichen Sun, Jian Qiao, Yong Liang, Longchao Liu, Chunbo Dong, Aijun Shen, Yang Wang, Hong Tang, Yang-Xin Fu, Hua Peng
Local delivery of IL-21 is superior to systemic delivery for tumor control.