Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

HTATIP2 regulates arteriogenic activity in monocytes from patients with limb ischemia
Ashish S. Patel, Francesca E. Ludwinski, Angeles Mondragon, Katherine Nuthall, Prakash Saha, Oliver Lyons, Mario Leonardo Squadrito, Richard Siow, Michele De Palma, Alberto Smith, Bijan Modarai
Ashish S. Patel, Francesca E. Ludwinski, Angeles Mondragon, Katherine Nuthall, Prakash Saha, Oliver Lyons, Mario Leonardo Squadrito, Richard Siow, Michele De Palma, Alberto Smith, Bijan Modarai
View: Text | PDF
Research Article Angiogenesis Therapeutics

HTATIP2 regulates arteriogenic activity in monocytes from patients with limb ischemia

  • Text
  • PDF
Abstract

Use of autologous cells isolated from elderly patients with multiple comorbidities may account for the modest efficacy of cell therapy in patients with chronic limb threatening ischemia (CLTI). We aimed to determine whether proarteriogenic monocyte/macrophages (Mo/MΦs) from patients with CLTI were functionally impaired and to demonstrate the mechanisms related to any impairment. Proarteriogenic Mo/MΦs isolated from patients with CLTI were found to have an impaired capacity to promote neovascularization in vitro and in vivo compared with those isolated from healthy controls. This was associated with increased expression of human HIV-1 TAT interactive protein-2 (HTATIP2), a transcription factor known to suppress angiogenesis/arteriogenesis. Silencing HTATIP2 restored the functional capacity of CLTI Mo/MΦs, which was associated with increased expression of arteriogenic regulators Neuropilin-1 and Angiopoietin-1, and their ability to enhance angiogenic (endothelial tubule formation) and arteriogenic (smooth muscle proliferation) processes in vitro. In support of the translational relevance of our findings, silencing HTATIP2 in proarteriogenic Mo/MΦs isolated from patients with CLTI rescued their capacity to enhance limb perfusion in the ischemic hindlimb by effecting greater angiogenesis and arteriogenesis. Ex vivo modulation of HTATIP2 may offer a strategy for rescuing the functional impairment of pro–angio/arteriogenic Mo/MΦs prior to autologous delivery and increase the likelihood of clinical efficacy.

Authors

Ashish S. Patel, Francesca E. Ludwinski, Angeles Mondragon, Katherine Nuthall, Prakash Saha, Oliver Lyons, Mario Leonardo Squadrito, Richard Siow, Michele De Palma, Alberto Smith, Bijan Modarai

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 609 100
PDF 167 18
Figure 290 0
Supplemental data 107 15
Citation downloads 117 0
Totals 1,290 133
Total Views 1,423

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts