Toll-like receptor 3 (TLR3) is a pathogen recognition molecule associated with viral infection with double-stranded RNA (dsRNA) as its ligand. We evaluated the role of TLR3 in bacterial pneumonia using Klebsiella pneumoniae (KP). WT and TLR3–/– mice were subjected to a lethal model of KP. Alveolar macrophage polarization, bactericidal activity, and phagocytic capacity were compared. RNA-sequencing was performed on alveolar macrophages from the WT and TLR3–/– mice. Adoptive transfers of alveolar macrophages from TLR3–/– mice to WT mice with KP were evaluated for survival. Expression of TLR3 in postmortem human lung samples from patients who died from gram-negative pneumonia and pathological grading of pneumonitis was determined. Mortality was significantly lower in TLR3–/–, and survival improved in WT mice following antibody neutralization of TLR3 and with TLR3/dsRNA complex inhibitor. Alveolar macrophages from TLR3–/– mice demonstrated increased bactericidal and phagocytic capacity. RNA-sequencing showed an increased production of chemokines in TLR3–/– mice. Adoptive transfer of alveolar macrophages from the TLR3–/– mice restored the survival in WT mice. Human lung samples demonstrated a good correlation between the grade of pneumonitis and TLR3 expression. These data represent a paradigm shift in understanding the mechanistic role of TLR3 in bacterial pneumonia.
Madathilparambil V. Suresh, Vladislav A. Dolgachev, Boya Zhang, Sanjay Balijepalli, Samantha Swamy, Jashitha Mooliyil, Georgia Kralovich, Bivin Thomas, David Machado-Aranda, Monita Karmakar, Sanjeev Lalwani, Arulselvi Subramanian, Arun Anantharam, Bethany B. Moore, Krishnan Raghavendran
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 348 | 225 |
52 | 74 | |
Figure | 286 | 4 |
Table | 52 | 0 |
Supplemental data | 24 | 1 |
Citation downloads | 36 | 0 |
Totals | 798 | 304 |
Total Views | 1,102 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.