Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

TLR3 absence confers increased survival with improved macrophage activity against pneumonia
Madathilparambil V. Suresh, … , Bethany B. Moore, Krishnan Raghavendran
Madathilparambil V. Suresh, … , Bethany B. Moore, Krishnan Raghavendran
Published December 5, 2019
Citation Information: JCI Insight. 2019;4(23):e131195. https://doi.org/10.1172/jci.insight.131195.
View: Text | PDF
Research Article Infectious disease

TLR3 absence confers increased survival with improved macrophage activity against pneumonia

  • Text
  • PDF
Abstract

Toll-like receptor 3 (TLR3) is a pathogen recognition molecule associated with viral infection with double-stranded RNA (dsRNA) as its ligand. We evaluated the role of TLR3 in bacterial pneumonia using Klebsiella pneumoniae (KP). WT and TLR3–/– mice were subjected to a lethal model of KP. Alveolar macrophage polarization, bactericidal activity, and phagocytic capacity were compared. RNA-sequencing was performed on alveolar macrophages from the WT and TLR3–/– mice. Adoptive transfers of alveolar macrophages from TLR3–/– mice to WT mice with KP were evaluated for survival. Expression of TLR3 in postmortem human lung samples from patients who died from gram-negative pneumonia and pathological grading of pneumonitis was determined. Mortality was significantly lower in TLR3–/–, and survival improved in WT mice following antibody neutralization of TLR3 and with TLR3/dsRNA complex inhibitor. Alveolar macrophages from TLR3–/– mice demonstrated increased bactericidal and phagocytic capacity. RNA-sequencing showed an increased production of chemokines in TLR3–/– mice. Adoptive transfer of alveolar macrophages from the TLR3–/– mice restored the survival in WT mice. Human lung samples demonstrated a good correlation between the grade of pneumonitis and TLR3 expression. These data represent a paradigm shift in understanding the mechanistic role of TLR3 in bacterial pneumonia.

Authors

Madathilparambil V. Suresh, Vladislav A. Dolgachev, Boya Zhang, Sanjay Balijepalli, Samantha Swamy, Jashitha Mooliyil, Georgia Kralovich, Bivin Thomas, David Machado-Aranda, Monita Karmakar, Sanjeev Lalwani, Arulselvi Subramanian, Arun Anantharam, Bethany B. Moore, Krishnan Raghavendran

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 639 235
PDF 88 74
Figure 551 3
Table 118 0
Supplemental data 37 2
Citation downloads 91 0
Totals 1,524 314
Total Views 1,838
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts