Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain
Gregory N. Ruegsegger, Patrick M. Vanderboom, Surendra Dasari, Katherine A. Klaus, Parijat Kabiraj, Christina B. McCarthy, Claudia F. Lucchinetti, K. Sreekumaran Nair
Gregory N. Ruegsegger, Patrick M. Vanderboom, Surendra Dasari, Katherine A. Klaus, Parijat Kabiraj, Christina B. McCarthy, Claudia F. Lucchinetti, K. Sreekumaran Nair
View: Text | PDF
Research Article Endocrinology Metabolism

Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain

  • Text
  • PDF
Abstract

Insulin resistance associates with increased risk for cognitive decline and dementia; however, the underpinning mechanisms for this increased risk remain to be fully defined. As insulin resistance impairs mitochondrial oxidative metabolism and increases ROS in skeletal muscle, we considered whether similar events occur in the brain, which — like muscle — is rich in insulin receptors and mitochondria. We show that high-fat diet–induced (HFD-induced) brain insulin resistance in mice decreased mitochondrial ATP production rate and oxidative enzyme activities in brain regions rich in insulin receptors. HFD increased ROS emission and reduced antioxidant enzyme activities, with the concurrent accumulation of oxidatively damaged mitochondrial proteins and increased mitochondrial fission. Improvement of insulin sensitivity by both aerobic exercise and metformin ameliorated HFD-induced abnormalities. Moreover, insulin-induced enhancement of ATP production in primary cortical neurons and astrocytes was counteracted by the insulin receptor antagonist S961, demonstrating a direct effect of insulin resistance on brain mitochondria. Further, intranasal S961 administration prevented exercise-induced improvements in ATP production and ROS emission during HFD, supporting that exercise enhances brain mitochondrial function by improving insulin action. These results support that insulin sensitizing by exercise and metformin restores brain mitochondrial function in insulin-resistant states.

Authors

Gregory N. Ruegsegger, Patrick M. Vanderboom, Surendra Dasari, Katherine A. Klaus, Parijat Kabiraj, Christina B. McCarthy, Claudia F. Lucchinetti, K. Sreekumaran Nair

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,902 346
PDF 130 84
Figure 501 6
Supplemental data 58 14
Citation downloads 108 0
Totals 2,699 450
Total Views 3,149
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts