Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

Computational modeling reveals multiple abnormalities of myocardial noradrenergic function in Lewy body diseases
David S. Goldstein, … , Graeme Eisenhofer, Yehonatan Sharabi
David S. Goldstein, … , Graeme Eisenhofer, Yehonatan Sharabi
Published July 23, 2019
Citation Information: JCI Insight. 2019;4(16):e130441. https://doi.org/10.1172/jci.insight.130441.
View: Text | PDF
Clinical Research and Public Health Cardiology Neuroscience

Computational modeling reveals multiple abnormalities of myocardial noradrenergic function in Lewy body diseases

  • Text
  • PDF
Abstract

BACKGROUND Lewy body diseases, a family of aging-related neurodegenerative disorders, entail loss of the catecholamine dopamine in the nigrostriatal system and equally severe deficiency of the closely related catecholamine norepinephrine in the heart. The myocardial noradrenergic lesion is associated with major nonmotor symptoms and decreased survival. Numerous mechanisms determine norepinephrine stores, and which of these are altered in Lewy body diseases has not been examined in an integrated way. We used a computational modeling approach to assess comprehensively pathways of cardiac norepinephrine synthesis, storage, release, reuptake, and metabolism in Lewy body diseases. Application of a potentially novel kinetic model identified a pattern of dysfunctional steps contributing to norepinephrine deficiency. We then tested predictions from the model in a new cohort of Parkinson disease patients.METHODS Rate constants were calculated for 17 reactions determining intraneuronal norepinephrine stores. Model predictions were tested by measuring postmortem apical ventricular concentrations and concentration ratios of catechols in controls and patients with Parkinson disease.RESULTS The model identified low rate constants for 3 types of processes in the Lewy body group: catecholamine biosynthesis via tyrosine hydroxylase and aromatic l-amino acid decarboxylase, vesicular storage of dopamine and norepinephrine, and neuronal norepinephrine reuptake via the cell membrane norepinephrine transporter. Postmortem catechols and catechol ratios confirmed this triad of model-predicted functional abnormalities.CONCLUSION Denervation-independent impairments of neurotransmitter biosynthesis, vesicular sequestration, and norepinephrine recycling contribute to the myocardial norepinephrine deficiency attending Lewy body diseases. A proportion of cardiac sympathetic nerves are “sick but not dead,” suggesting targeted disease modification strategies might retard clinical progression.FUNDING Division of Intramural Research, NINDS.

Authors

David S. Goldstein, Mark J. Pekker, Graeme Eisenhofer, Yehonatan Sharabi

×

Total citations by year

Year: 2024 2023 2022 2021 2020 2019 Total
Citations: 2 3 3 4 6 2 20
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2022 (3)

Title and authors Publication Year
The rat rotenone model reproduces the abnormal pattern of central catecholamine metabolism found in Parkinson's disease
R Landau, R Halperin, P Sullivan, Z Zibly, A Leibowitz, D Goldstein, Y Sharabi
Disease models & mechanisms 2022
Pathophysiological significance of increased α-synuclein deposition in sympathetic nerves in Parkinson’s disease: a post-mortem observational study
R Isonaka, P Sullivan, D Goldstein
Translational Neurodegeneration 2022
Modeling the Progression of Cardiac Catecholamine Deficiency in Lewy Body Diseases
Goldstein DS, Pekker MJ, Sullivan P, Isonaka R, Sharabi Y
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease 2022

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts