Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
In situ metabolomics of aldosterone-producing adenomas
Masanori Murakami, Yara Rhayem, Thomas Kunzke, Na Sun, Annette Feuchtinger, Philippe Ludwig, Tim Matthias Strom, Celso Gomez-Sanchez, Thomas Knösel, Thomas Kirchner, Tracy Ann Williams, Martin Reincke, Axel Karl Walch, Felix Beuschlein
Masanori Murakami, Yara Rhayem, Thomas Kunzke, Na Sun, Annette Feuchtinger, Philippe Ludwig, Tim Matthias Strom, Celso Gomez-Sanchez, Thomas Knösel, Thomas Kirchner, Tracy Ann Williams, Martin Reincke, Axel Karl Walch, Felix Beuschlein
View: Text | PDF
Research Article Endocrinology

In situ metabolomics of aldosterone-producing adenomas

  • Text
  • PDF
Abstract

Recent genetic examinations and multisteroid profiles have provided the basis for subclassification of aldosterone-producing adenomas (APAs). The objective of the current study was to produce a comprehensive, high-resolution mass spectrometry imaging (MSI) map of APAs in relation to morphometry, immunohistochemical profiles, mutational status, and clinical outcome. The study cohort comprised 136 patients with unilateral primary aldosteronism. Matrix-assisted laser desorption/ionization–Fourier transform–ion cyclotron resonance MSI was conducted, and metabolite profiles were analyzed with genotype/phenotype information, including digital image analysis from morphometry and IHC of steroidogenic enzymes. Distinct molecular signatures between KCNJ5- and CACNA1D-mutated APAs with significant differences of 137 metabolites, including metabolites of purine metabolism and steroidogenesis, were observed. Intratumor concentration of 18-oxocortisol and 18-hydroxycortisol were inversely correlated with the staining intensity of CYP11B1. Lower staining intensity of CYP11B1 and higher levels of 18-oxocortisol were associated with a higher probability of complete clinical success after surgery. The present study demonstrates distinct metabolomic profiles of APAs in relation to tumor genotype. In addition, we reveal an inverse correlation between cortisol derivatives and CYP11B1 and the impact of 18-oxocortisol and CYP11B1 on clinical outcome, which provides unprecedented insights into the pathophysiology, clinical features, and steroidogenesis of APAs.

Authors

Masanori Murakami, Yara Rhayem, Thomas Kunzke, Na Sun, Annette Feuchtinger, Philippe Ludwig, Tim Matthias Strom, Celso Gomez-Sanchez, Thomas Knösel, Thomas Kirchner, Tracy Ann Williams, Martin Reincke, Axel Karl Walch, Felix Beuschlein

×

Figure 2

Metabolome features of 60 APA samples.

Options: View larger image (or click on image) Download as PowerPoint
Metabolome features of 60 APA samples.
Unguided hierarchical clustering ...
Unguided hierarchical clustering analysis (A) and orthogonal partial least squares discriminant analysis (ortho-PLSDA) (B) of metabolome profiles between APAs with KCNJ5 and CACNA1D mutations. (C) Shown are significant differences in metabolites of the purine metabolism and intensities of adenosine monophosphate (AMP), adenosine diphosphate (ADP), and d-Ribulose 5-phosphate between KCNJ5- and CACNA1D-mutated APAs (adjusted P = 0.010, 0.003, and 0.047, respectively). (D) Intensities of 1-phosphatidyl-d-myo-inositol between KCNJ5- and CACNA1D-mutated APAs (adjusted P = 0.009). *adjusted P < 0.05; **adjusted P < 0.01. (E) Significant changes in intensities between KCNJ5- and CACNA1D-mutated APAs of 18-oxocoritsol (P = 0.020) and 18-hydroxycortisol (P < 0.001). Mann-Whitney U test was used for statistical analysis. *P < 0.05; **P < 0.01. The box plots depict the minimum and maximum values (whiskers), the upper and lower quartiles, and the median. The length of the box represents the interquartile range.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts