Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

PD-1hiCXCR5– T peripheral helper cells promote B cell responses in lupus via MAF and IL-21
Alexandra V. Bocharnikov, … , James A. Lederer, Deepak A. Rao
Alexandra V. Bocharnikov, … , James A. Lederer, Deepak A. Rao
Published September 19, 2019
Citation Information: JCI Insight. 2019;4(20):e130062. https://doi.org/10.1172/jci.insight.130062.
View: Text | PDF
Research Article Immunology

PD-1hiCXCR5– T peripheral helper cells promote B cell responses in lupus via MAF and IL-21

  • Text
  • PDF
Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by pathologic T cell–B cell interactions and autoantibody production. Defining the T cell populations that drive B cell responses in SLE may enable design of therapies that specifically target pathologic cell subsets. Here, we evaluated the phenotypes of CD4+ T cells in the circulation of 52 SLE patients drawn from multiple cohorts and identified a highly expanded PD-1hiCXCR5–CD4+ T cell population. Cytometric, transcriptomic, and functional assays demonstrated that PD-1hiCXCR5–CD4+ T cells from SLE patients are T peripheral helper (Tph) cells, a CXCR5– T cell population that stimulates B cell responses via IL-21. The frequency of Tph cells, but not T follicular helper (Tfh) cells, correlated with both clinical disease activity and the frequency of CD11c+ B cells in SLE patients. PD-1hiCD4+ T cells were found within lupus nephritis kidneys and correlated with B cell numbers in the kidney. Both IL-21 neutralization and CRISPR-mediated deletion of MAF abrogated the ability of Tph cells to induce memory B cell differentiation into plasmablasts in vitro. These findings identify Tph cells as a highly expanded T cell population in SLE and suggest a key role for Tph cells in stimulating pathologic B cell responses.

Authors

Alexandra V. Bocharnikov, Joshua Keegan, Vanessa S. Wacleche, Ye Cao, Chamith Y. Fonseka, Guoxing Wang, Eric S. Muise, Kelvin X. Zhang, Arnon Arazi, Gregory Keras, Zhihan J. Li, Yujie Qu, Michael F. Gurish, Accelerating Medicines Partnership (AMP) RA/SLE Network, Michelle Petri, Jill P. Buyon, Chaim Putterman, David Wofsy, Judith A. James, Joel M. Guthridge, Betty Diamond, Jennifer H. Anolik, Matthew F. Mackey, Stephen E. Alves, Peter A. Nigrovic, Karen H. Costenbader, Michael B. Brenner, James A. Lederer, Deepak A. Rao

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2020 2019 Total
Citations: 20 28 26 31 23 12 1 141
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts