Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

β1 Integrin regulates adult lung alveolar epithelial cell inflammation
Erin J. Plosa, … , Timothy S. Blackwell, Roy Zent
Erin J. Plosa, … , Timothy S. Blackwell, Roy Zent
Published December 24, 2019
Citation Information: JCI Insight. 2020;5(2):e129259. https://doi.org/10.1172/jci.insight.129259.
View: Text | PDF
Research Article Inflammation Pulmonology

β1 Integrin regulates adult lung alveolar epithelial cell inflammation

  • Text
  • PDF
Abstract

Integrins, the extracellular matrix receptors that facilitate cell adhesion and migration, are necessary for organ morphogenesis; however, their role in maintaining adult tissue homeostasis is poorly understood. To define the functional importance of β1 integrin in adult mouse lung, we deleted it after completion of development in type 2 alveolar epithelial cells (AECs). Aged β1 integrin–deficient mice exhibited chronic obstructive pulmonary disease–like (COPD-like) pathology characterized by emphysema, lymphoid aggregates, and increased macrophage infiltration. These histopathological abnormalities were preceded by β1 integrin–deficient AEC dysfunction such as excessive ROS production and upregulation of NF-κB–dependent chemokines, including CCL2. Genetic deletion of the CCL2 receptor, Ccr2, in mice with β1 integrin–deficient type 2 AECs impaired recruitment of monocyte-derived macrophages and resulted in accelerated inflammation and severe premature emphysematous destruction. The lungs exhibited reduced AEC efferocytosis and excessive numbers of inflamed type 2 AECs, demonstrating the requirement for recruited monocytes/macrophages in limiting lung injury and remodeling in the setting of a chronically inflamed epithelium. These studies support a critical role for β1 integrin in alveolar homeostasis in the adult lung.

Authors

Erin J. Plosa, John T. Benjamin, Jennifer M. Sucre, Peter M. Gulleman, Linda A. Gleaves, Wei Han, Seunghyi Kook, Vasiliy V. Polosukhin, Scott M. Haake, Susan H. Guttentag, Lisa R. Young, Ambra Pozzi, Timothy S. Blackwell, Roy Zent

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 884 507
PDF 129 105
Figure 499 8
Supplemental data 51 4
Citation downloads 106 0
Totals 1,669 624
Total Views 2,293
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts