Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Cardiomyocyte d-dopachrome tautomerase protects against heart failure
Yina Ma, Kevin N. Su, Daniel Pfau, Veena S. Rao, Xiaohong Wu, Xiaoyue Hu, Lin Leng, Xin Du, Marta Piecychna, Kenneth Bedi, Stuart G. Campbell, Anne Eichmann, Jeffrey M. Testani, Kenneth B. Margulies, Richard Bucala, Lawrence H. Young
Yina Ma, Kevin N. Su, Daniel Pfau, Veena S. Rao, Xiaohong Wu, Xiaoyue Hu, Lin Leng, Xin Du, Marta Piecychna, Kenneth Bedi, Stuart G. Campbell, Anne Eichmann, Jeffrey M. Testani, Kenneth B. Margulies, Richard Bucala, Lawrence H. Young
View: Text | PDF
Research Article Cardiology

Cardiomyocyte d-dopachrome tautomerase protects against heart failure

  • Text
  • PDF
Abstract

The mechanisms contributing to heart failure remain incompletely understood. d-dopachrome tautomerase (DDT) is a member of the macrophage migration inhibitory factor family of cytokines and is highly expressed in cardiomyocytes. This study examined the role of cardiomyocyte DDT in the setting of heart failure. Patients with advanced heart failure undergoing transplantation demonstrated decreased cardiac DDT expression. To understand the effect of loss of cardiac DDT in experimental heart failure, cardiomyocyte-specific DDT-KO (DDT-cKO) and littermate control mice underwent surgical transverse aortic constriction (TAC) to induce cardiac pressure overload. DDT-cKO mice developed more rapid cardiac contractile dysfunction, greater cardiac dilatation, and pulmonary edema after TAC. Cardiomyocytes from DDT-cKO mice after TAC had impaired contractility, calcium transients, and reduced expression of the sarcoplasmic reticulum calcium ATPase. The DDT-cKO hearts also exhibited diminished angiogenesis with reduced capillary density and lower VEGF-A expression after TAC. In pharmacological studies, recombinant DDT (rDDT) activated endothelial cell ERK1/2 and Akt signaling and had proangiogenic effects in vitro. The DDT-cKO hearts also demonstrated more interstitial fibrosis with enhanced collagen and connective tissue growth factor expression after TAC. In cardiac fibroblasts, rDDT had an antifibrotic action by inhibiting TGF-β–induced Smad-2 activation. Thus, endogenous cardiomyocyte DDT has pleiotropic actions that are protective against heart failure.

Authors

Yina Ma, Kevin N. Su, Daniel Pfau, Veena S. Rao, Xiaohong Wu, Xiaoyue Hu, Lin Leng, Xin Du, Marta Piecychna, Kenneth Bedi, Stuart G. Campbell, Anne Eichmann, Jeffrey M. Testani, Kenneth B. Margulies, Richard Bucala, Lawrence H. Young

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 717 138
PDF 115 26
Figure 450 2
Supplemental data 61 6
Citation downloads 87 0
Totals 1,430 172
Total Views 1,602
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts