EIF2AK4, which encodes the amino acid deficiency–sensing protein GCN2, has been implicated as a susceptibility gene for type 2 diabetes in the Japanese population. However, the mechanism by which GCN2 affects glucose homeostasis is unclear. Here, we show that insulin secretion is reduced in individuals harboring the risk allele of EIF2AK4 and that maintenance of GCN2-deficient mice on a high-fat diet results in a loss of pancreatic β cell mass. Our data suggest that GCN2 senses amino acid deficiency in β cells and limits signaling by mechanistic target of rapamycin complex 1 to prevent β cell failure during the consumption of a high-fat diet.
Ayumi Kanno, Shun-ichiro Asahara, Ayuko Furubayashi, Katsuhisa Masuda, Risa Yoshitomi, Emi Suzuki, Tomoko Takai, Maki Kimura-Koyanagi, Tomokazu Matsuda, Alberto Bartolome, Yushi Hirota, Norihide Yokoi, Yuka Inaba, Hiroshi Inoue, Michihiro Matsumoto, Kenichi Inoue, Takaya Abe, Fan-Yan Wei, Kazuhito Tomizawa, Wataru Ogawa, Susumu Seino, Masato Kasuga, Yoshiaki Kido
Activation of mTORC1 signaling is the result of impaired ATF4 and Sestrin2 expression in HFD-fed GCN2–/– mice.